hello-algo/docs/chapter_array_and_linkedlist/linked_list.md

762 lines
24 KiB
Markdown
Raw Normal View History

2023-02-28 20:03:53 +08:00
# 链表
2022-11-22 17:47:26 +08:00
内存空间是所有程序的公共资源,在一个复杂的系统运行环境下,空闲的内存空间可能散落在内存各处。我们知道,存储数组的内存空间必须是连续的,而当数组非常大时,内存可能无法提供如此大的连续空间。此时链表的灵活性优势就体现出来了。
2022-11-22 17:47:26 +08:00
「链表 linked list」是一种线性数据结构其中的每个元素都是一个节点对象各个节点通过“引用”相连接。引用记录了下一个节点的内存地址通过它可以从当前节点访问到下一个节点。
链表的设计使得各个节点可以分散存储在内存各处,它们的内存地址无须连续。
2022-11-22 17:47:26 +08:00
![链表定义与存储方式](linked_list.assets/linkedlist_definition.png)
2022-11-22 17:47:26 +08:00
观察上图,链表的组成单位是「节点 node」对象。每个节点都包含两项数据节点的“值”和指向下一节点的“引用”。
- 链表的首个节点被称为“头节点”,最后一个节点被称为“尾节点”。
- 尾节点指向的是“空”,它在 Java、C++ 和 Python 中分别被记为 `null`、`nullptr` 和 `None`
- 在 C、C++、Go 和 Rust 等支持指针的语言中,上述“引用”应被替换为“指针”。
如以下代码所示,链表节点 `ListNode` 除了包含值,还需额外保存一个引用(指针)。因此在相同数据量下,**链表比数组占用更多的内存空间**。
=== "Python"
2022-11-22 17:47:26 +08:00
```python title=""
class ListNode:
"""链表节点类"""
def __init__(self, val: int):
2023-09-20 01:53:44 +08:00
self.val: int = val # 节点值
self.next: ListNode | None = None # 指向下一节点的引用
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title=""
/* 链表节点结构体 */
struct ListNode {
int val; // 节点值
ListNode *next; // 指向下一节点的指针
ListNode(int x) : val(x), next(nullptr) {} // 构造函数
};
2022-11-22 17:47:26 +08:00
```
=== "Java"
2022-11-22 17:47:26 +08:00
```java title=""
/* 链表节点类 */
class ListNode {
int val; // 节点值
ListNode next; // 指向下一节点的引用
ListNode(int x) { val = x; } // 构造函数
}
```
=== "C#"
```csharp title=""
/* 链表节点类 */
class ListNode(int x) { //构造函数
int val = x; // 节点值
ListNode? next; // 指向下一节点的引用
}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title=""
/* 链表节点结构体 */
type ListNode struct {
Val int // 节点值
Next *ListNode // 指向下一节点的指针
}
// NewListNode 构造函数,创建一个新的链表
func NewListNode(val int) *ListNode {
return &ListNode{
Val: val,
Next: nil,
}
}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title=""
/* 链表节点类 */
class ListNode {
var val: Int // 节点值
var next: ListNode? // 指向下一节点的引用
init(x: Int) { // 构造函数
val = x
}
}
```
=== "JS"
2022-12-03 01:31:29 +08:00
2023-02-08 04:27:55 +08:00
```javascript title=""
/* 链表节点类 */
class ListNode {
constructor(val, next) {
this.val = (val === undefined ? 0 : val); // 节点值
this.next = (next === undefined ? null : next); // 指向下一节点的引用
}
}
2022-12-03 01:31:29 +08:00
```
=== "TS"
2022-12-03 01:31:29 +08:00
```typescript title=""
/* 链表节点类 */
class ListNode {
val: number;
next: ListNode | null;
constructor(val?: number, next?: ListNode | null) {
this.val = val === undefined ? 0 : val; // 节点值
this.next = next === undefined ? null : next; // 指向下一节点的引用
}
}
2022-12-03 01:31:29 +08:00
```
=== "Dart"
```dart title=""
/* 链表节点类 */
class ListNode {
int val; // 节点值
ListNode? next; // 指向下一节点的引用
ListNode(this.val, [this.next]); // 构造函数
}
```
=== "Rust"
```rust title=""
use std::rc::Rc;
use std::cell::RefCell;
/* 链表节点类 */
#[derive(Debug)]
struct ListNode {
val: i32, // 节点值
next: Option<Rc<RefCell<ListNode>>>, // 指向下一节点的指针
}
```
2022-12-03 01:31:29 +08:00
=== "C"
```c title=""
/* 链表节点结构体 */
typedef struct ListNode {
int val; // 节点值
struct ListNode *next; // 指向下一节点的指针
} ListNode;
/* 构造函数 */
ListNode *newListNode(int val) {
ListNode *node;
node = (ListNode *) malloc(sizeof(ListNode));
node->val = val;
node->next = NULL;
return node;
}
2022-12-03 01:31:29 +08:00
```
=== "Kotlin"
```kotlin title=""
/* 链表节点类 */
// 构造方法
class ListNode(x: Int) {
val _val: Int = x // 节点值
val next: ListNode? = null // 指向下一个节点的引用
}
```
=== "Ruby"
```ruby title=""
# 链表节点类
class ListNode
attr_accessor :val # 节点值
attr_accessor :next # 指向下一节点的引用
def initialize(val=0, next_node=nil)
@val = val
@next = next_node
end
end
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title=""
// 链表节点类
pub fn ListNode(comptime T: type) type {
return struct {
const Self = @This();
val: T = 0, // 节点值
next: ?*Self = null, // 指向下一节点的指针
// 构造函数
pub fn init(self: *Self, x: i32) void {
self.val = x;
self.next = null;
}
};
}
2023-02-01 22:03:04 +08:00
```
## 链表常用操作
### 初始化链表
建立链表分为两步,第一步是初始化各个节点对象,第二步是构建节点之间的引用关系。初始化完成后,我们就可以从链表的头节点出发,通过引用指向 `next` 依次访问所有节点。
2023-07-26 11:00:53 +08:00
=== "Python"
2023-07-26 11:00:53 +08:00
```python title="linked_list.py"
# 初始化链表 1 -> 3 -> 2 -> 5 -> 4
# 初始化各个节点
n0 = ListNode(1)
n1 = ListNode(3)
n2 = ListNode(2)
n3 = ListNode(5)
n4 = ListNode(4)
# 构建节点之间的引用
n0.next = n1
n1.next = n2
n2.next = n3
n3.next = n4
```
=== "C++"
```cpp title="linked_list.cpp"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
ListNode* n0 = new ListNode(1);
ListNode* n1 = new ListNode(3);
ListNode* n2 = new ListNode(2);
ListNode* n3 = new ListNode(5);
ListNode* n4 = new ListNode(4);
// 构建节点之间的引用
n0->next = n1;
n1->next = n2;
n2->next = n3;
n3->next = n4;
```
2022-11-22 17:47:26 +08:00
=== "Java"
2023-01-08 19:41:05 +08:00
```java title="linked_list.java"
2022-11-22 17:47:26 +08:00
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
2022-11-22 17:47:26 +08:00
ListNode n0 = new ListNode(1);
ListNode n1 = new ListNode(3);
ListNode n2 = new ListNode(2);
ListNode n3 = new ListNode(5);
ListNode n4 = new ListNode(4);
// 构建节点之间的引用
2022-11-22 17:47:26 +08:00
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```
=== "C#"
2022-11-22 17:47:26 +08:00
```csharp title="linked_list.cs"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
ListNode n0 = new(1);
ListNode n1 = new(3);
ListNode n2 = new(2);
ListNode n3 = new(5);
ListNode n4 = new(4);
// 构建节点之间的引用
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
2023-01-08 19:41:05 +08:00
```go title="linked_list.go"
2023-01-02 18:41:21 +08:00
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
2023-01-02 18:41:21 +08:00
n0 := NewListNode(1)
n1 := NewListNode(3)
n2 := NewListNode(2)
n3 := NewListNode(5)
n4 := NewListNode(4)
// 构建节点之间的引用
2023-01-02 18:41:21 +08:00
n0.Next = n1
n1.Next = n2
n2.Next = n3
n3.Next = n4
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="linked_list.swift"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
let n0 = ListNode(x: 1)
let n1 = ListNode(x: 3)
let n2 = ListNode(x: 2)
let n3 = ListNode(x: 5)
let n4 = ListNode(x: 4)
// 构建节点之间的引用
n0.next = n1
n1.next = n2
n2.next = n3
n3.next = n4
```
=== "JS"
2022-12-03 01:31:29 +08:00
2023-02-08 04:27:55 +08:00
```javascript title="linked_list.js"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
const n0 = new ListNode(1);
const n1 = new ListNode(3);
const n2 = new ListNode(2);
const n3 = new ListNode(5);
const n4 = new ListNode(4);
// 构建节点之间的引用
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
2022-12-03 01:31:29 +08:00
```
=== "TS"
2022-12-03 01:31:29 +08:00
2023-01-08 19:41:05 +08:00
```typescript title="linked_list.ts"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
const n0 = new ListNode(1);
const n1 = new ListNode(3);
const n2 = new ListNode(2);
const n3 = new ListNode(5);
const n4 = new ListNode(4);
// 构建节点之间的引用
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
2022-12-03 01:31:29 +08:00
```
=== "Dart"
```dart title="linked_list.dart"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */\
// 初始化各个节点
ListNode n0 = ListNode(1);
ListNode n1 = ListNode(3);
ListNode n2 = ListNode(2);
ListNode n3 = ListNode(5);
ListNode n4 = ListNode(4);
// 构建节点之间的引用
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```
2023-07-26 11:00:53 +08:00
=== "Rust"
```rust title="linked_list.rs"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
let n0 = Rc::new(RefCell::new(ListNode { val: 1, next: None }));
let n1 = Rc::new(RefCell::new(ListNode { val: 3, next: None }));
let n2 = Rc::new(RefCell::new(ListNode { val: 2, next: None }));
let n3 = Rc::new(RefCell::new(ListNode { val: 5, next: None }));
let n4 = Rc::new(RefCell::new(ListNode { val: 4, next: None }));
2023-07-26 11:00:53 +08:00
// 构建节点之间的引用
n0.borrow_mut().next = Some(n1.clone());
n1.borrow_mut().next = Some(n2.clone());
n2.borrow_mut().next = Some(n3.clone());
n3.borrow_mut().next = Some(n4.clone());
2023-07-26 11:00:53 +08:00
```
=== "C"
```c title="linked_list.c"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
ListNode* n0 = newListNode(1);
ListNode* n1 = newListNode(3);
ListNode* n2 = newListNode(2);
ListNode* n3 = newListNode(5);
ListNode* n4 = newListNode(4);
// 构建节点之间的引用
n0->next = n1;
n1->next = n2;
n2->next = n3;
n3->next = n4;
```
=== "Kotlin"
```kotlin title="linked_list.kt"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
val n0 = ListNode(1)
val n1 = ListNode(3)
val n2 = ListNode(2)
val n3 = ListNode(5)
val n4 = ListNode(4)
// 构建节点之间的引用
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```
=== "Ruby"
```ruby title="linked_list.rb"
# 初始化链表 1 -> 3 -> 2 -> 5 -> 4
# 初始化各个节点
n0 = ListNode.new 1
n1 = ListNode.new 3
n2 = ListNode.new 2
n3 = ListNode.new 5
n4 = ListNode.new 4
# 构建节点之间的引用
n0.next = n1
n1.next = n2
n2.next = n3
n3.next = n4
```
=== "Zig"
```zig title="linked_list.zig"
// 初始化链表
// 初始化各个节点
var n0 = inc.ListNode(i32){.val = 1};
var n1 = inc.ListNode(i32){.val = 3};
var n2 = inc.ListNode(i32){.val = 2};
var n3 = inc.ListNode(i32){.val = 5};
var n4 = inc.ListNode(i32){.val = 4};
// 构建节点之间的引用
n0.next = &n1;
n1.next = &n2;
n2.next = &n3;
n3.next = &n4;
```
??? pythontutor "可视化运行"
https://pythontutor.com/render.html#code=class%20ListNode%3A%0A%20%20%20%20%22%22%22%E9%93%BE%E8%A1%A8%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.next%3A%20ListNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%90%8E%E7%BB%A7%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E9%93%BE%E8%A1%A8%201%20-%3E%203%20-%3E%202%20-%3E%205%20-%3E%204%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%90%84%E4%B8%AA%E8%8A%82%E7%82%B9%0A%20%20%20%20n0%20%3D%20ListNode%281%29%0A%20%20%20%20n1%20%3D%20ListNode%283%29%0A%20%20%20%20n2%20%3D%20ListNode%282%29%0A%20%20%20%20n3%20%3D%20ListNode%285%29%0A%20%20%20%20n4%20%3D%20ListNode%284%29%0A%20%20%20%20%23%20%E6%9E%84%E5%BB%BA%E8%8A%82%E7%82%B9%E4%B9%8B%E9%97%B4%E7%9A%84%E5%BC%95%E7%94%A8%0A%20%20%20%20n0.next%20%3D%20n1%0A%20%20%20%20n1.next%20%3D%20n2%0A%20%20%20%20n2.next%20%3D%20n3%0A%20%20%20%20n3.next%20%3D%20n4&cumulative=false&curInstr=3&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false
数组整体是一个变量,比如数组 `nums` 包含元素 `nums[0]``nums[1]` 等,而链表是由多个独立的节点对象组成的。**我们通常将头节点当作链表的代称**,比如以上代码中的链表可记作链表 `n0`
### 插入节点
2023-08-06 23:19:37 +08:00
在链表中插入节点非常容易。如下图所示,假设我们想在相邻的两个节点 `n0``n1` 之间插入一个新节点 `P` **则只需改变两个节点引用(指针)即可**,时间复杂度为 $O(1)$ 。
2022-11-22 17:47:26 +08:00
相比之下,在数组中插入元素的时间复杂度为 $O(n)$ ,在大数据量下的效率较低。
2022-11-22 17:47:26 +08:00
![链表插入节点示例](linked_list.assets/linkedlist_insert_node.png)
2022-11-22 17:47:26 +08:00
```src
[file]{linked_list}-[class]{}-[func]{insert}
```
2023-02-25 23:35:39 +08:00
### 删除节点
如下图所示,在链表中删除节点也非常方便,**只需改变一个节点的引用(指针)即可**。
请注意,尽管在删除操作完成后节点 `P` 仍然指向 `n1` ,但实际上遍历此链表已经无法访问到 `P` ,这意味着 `P` 已经不再属于该链表了。
2023-02-25 23:35:39 +08:00
![链表删除节点](linked_list.assets/linkedlist_remove_node.png)
2023-02-25 23:35:39 +08:00
```src
[file]{linked_list}-[class]{}-[func]{remove}
```
2023-02-01 22:03:04 +08:00
### 访问节点
**在链表中访问节点的效率较低**。如上一节所述,我们可以在 $O(1)$ 时间下访问数组中的任意元素。链表则不然,程序需要从头节点出发,逐个向后遍历,直至找到目标节点。也就是说,访问链表的第 $i$ 个节点需要循环 $i - 1$ 轮,时间复杂度为 $O(n)$ 。
```src
[file]{linked_list}-[class]{}-[func]{access}
```
2023-02-01 22:03:04 +08:00
### 查找节点
2022-11-22 17:47:26 +08:00
遍历链表,查找其中值为 `target` 的节点,输出该节点在链表中的索引。此过程也属于线性查找。代码如下所示:
2022-11-22 17:47:26 +08:00
```src
[file]{linked_list}-[class]{}-[func]{find}
```
2023-02-01 22:03:04 +08:00
## 数组 vs. 链表
下表总结了数组和链表的各项特点并对比了操作效率。由于它们采用两种相反的存储策略,因此各种性质和操作效率也呈现对立的特点。
<p align="center"><id> &nbsp; 数组与链表的效率对比 </p>
2023-11-26 01:51:39 +08:00
| | 数组 | 链表 |
| -------- | ------------------------------ | -------------- |
| 存储方式 | 连续内存空间 | 分散内存空间 |
| 容量扩展 | 长度不可变 | 可灵活扩展 |
| 内存效率 | 元素占用内存少、但可能浪费空间 | 元素占用内存多 |
| 访问元素 | $O(1)$ | $O(n)$ |
| 添加元素 | $O(n)$ | $O(1)$ |
| 删除元素 | $O(n)$ | $O(1)$ |
## 常见链表类型
2022-11-22 17:47:26 +08:00
如下图所示,常见的链表类型包括三种。
2022-11-22 17:47:26 +08:00
- **单向链表**:即前面介绍的普通链表。单向链表的节点包含值和指向下一节点的引用两项数据。我们将首个节点称为头节点,将最后一个节点称为尾节点,尾节点指向空 `None`
- **环形链表**:如果我们令单向链表的尾节点指向头节点(首尾相接),则得到一个环形链表。在环形链表中,任意节点都可以视作头节点。
- **双向链表**:与单向链表相比,双向链表记录了两个方向的引用。双向链表的节点定义同时包含指向后继节点(下一个节点)和前驱节点(上一个节点)的引用(指针)。相较于单向链表,双向链表更具灵活性,可以朝两个方向遍历链表,但相应地也需要占用更多的内存空间。
2022-11-22 17:47:26 +08:00
=== "Python"
2022-11-22 17:47:26 +08:00
```python title=""
class ListNode:
"""双向链表节点类"""
def __init__(self, val: int):
2023-09-20 01:53:44 +08:00
self.val: int = val # 节点值
self.next: ListNode | None = None # 指向后继节点的引用
self.prev: ListNode | None = None # 指向前驱节点的引用
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title=""
/* 双向链表节点结构体 */
struct ListNode {
int val; // 节点值
ListNode *next; // 指向后继节点的指针
ListNode *prev; // 指向前驱节点的指针
ListNode(int x) : val(x), next(nullptr), prev(nullptr) {} // 构造函数
};
2022-11-22 17:47:26 +08:00
```
=== "Java"
2022-11-22 17:47:26 +08:00
```java title=""
/* 双向链表节点类 */
class ListNode {
int val; // 节点值
ListNode next; // 指向后继节点的引用
ListNode prev; // 指向前驱节点的引用
ListNode(int x) { val = x; } // 构造函数
}
```
=== "C#"
```csharp title=""
/* 双向链表节点类 */
class ListNode(int x) { // 构造函数
int val = x; // 节点值
ListNode next; // 指向后继节点的引用
ListNode prev; // 指向前驱节点的引用
}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title=""
/* 双向链表节点结构体 */
type DoublyListNode struct {
Val int // 节点值
Next *DoublyListNode // 指向后继节点的指针
Prev *DoublyListNode // 指向前驱节点的指针
}
// NewDoublyListNode 初始化
func NewDoublyListNode(val int) *DoublyListNode {
return &DoublyListNode{
Val: val,
Next: nil,
Prev: nil,
}
}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title=""
/* 双向链表节点类 */
class ListNode {
var val: Int // 节点值
var next: ListNode? // 指向后继节点的引用
var prev: ListNode? // 指向前驱节点的引用
init(x: Int) { // 构造函数
val = x
}
}
```
=== "JS"
2022-12-03 01:31:29 +08:00
2023-02-08 04:27:55 +08:00
```javascript title=""
/* 双向链表节点类 */
class ListNode {
2023-05-27 17:13:51 +08:00
constructor(val, next, prev) {
this.val = val === undefined ? 0 : val; // 节点值
this.next = next === undefined ? null : next; // 指向后继节点的引用
this.prev = prev === undefined ? null : prev; // 指向前驱节点的引用
}
}
2022-12-03 01:31:29 +08:00
```
=== "TS"
2022-12-03 01:31:29 +08:00
```typescript title=""
/* 双向链表节点类 */
class ListNode {
val: number;
next: ListNode | null;
prev: ListNode | null;
constructor(val?: number, next?: ListNode | null, prev?: ListNode | null) {
this.val = val === undefined ? 0 : val; // 节点值
this.next = next === undefined ? null : next; // 指向后继节点的引用
this.prev = prev === undefined ? null : prev; // 指向前驱节点的引用
}
}
2022-12-03 01:31:29 +08:00
```
=== "Dart"
```dart title=""
/* 双向链表节点类 */
class ListNode {
int val; // 节点值
ListNode next; // 指向后继节点的引用
ListNode prev; // 指向前驱节点的引用
ListNode(this.val, [this.next, this.prev]); // 构造函数
}
```
=== "Rust"
```rust title=""
use std::rc::Rc;
use std::cell::RefCell;
/* 双向链表节点类型 */
#[derive(Debug)]
struct ListNode {
val: i32, // 节点值
next: Option<Rc<RefCell<ListNode>>>, // 指向后继节点的指针
prev: Option<Rc<RefCell<ListNode>>>, // 指向前驱节点的指针
}
/* 构造函数 */
impl ListNode {
fn new(val: i32) -> Self {
ListNode {
val,
next: None,
prev: None,
}
}
}
```
2022-12-03 01:31:29 +08:00
=== "C"
```c title=""
/* 双向链表节点结构体 */
typedef struct ListNode {
int val; // 节点值
struct ListNode *next; // 指向后继节点的指针
struct ListNode *prev; // 指向前驱节点的指针
} ListNode;
/* 构造函数 */
ListNode *newListNode(int val) {
ListNode *node;
node = (ListNode *) malloc(sizeof(ListNode));
node->val = val;
node->next = NULL;
node->prev = NULL;
return node;
}
2022-12-03 01:31:29 +08:00
```
=== "Kotlin"
```kotlin title=""
/* 双向链表节点类 */
// 构造方法
class ListNode(x: Int) {
val _val: Int = x // 节点值
val next: ListNode? = null // 指向后继节点的引用
val prev: ListNode? = null // 指向前驱节点的引用
}
```
=== "Ruby"
```ruby title=""
# 双向链表节点类
class ListNode
attr_accessor :val # 节点值
attr_accessor :next # 指向后继节点的引用
attr_accessor :prev # 指向前驱节点的引用
def initialize(val=0, next_node=nil, prev_node=nil)
@val = val
@next = next_node
@prev = prev_node
end
end
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title=""
// 双向链表节点类
pub fn ListNode(comptime T: type) type {
return struct {
const Self = @This();
val: T = 0, // 节点值
next: ?*Self = null, // 指向后继节点的指针
prev: ?*Self = null, // 指向前驱节点的指针
// 构造函数
pub fn init(self: *Self, x: i32) void {
self.val = x;
self.next = null;
self.prev = null;
}
};
}
2023-02-01 22:03:04 +08:00
```
![常见链表种类](linked_list.assets/linkedlist_common_types.png)
## 链表典型应用
2023-08-21 03:57:09 +08:00
单向链表通常用于实现栈、队列、哈希表和图等数据结构。
- **栈与队列**:当插入和删除操作都在链表的一端进行时,它表现出先进后出的特性,对应栈;当插入操作在链表的一端进行,删除操作在链表的另一端进行,它表现出先进先出的特性,对应队列。
- **哈希表**:链式地址是解决哈希冲突的主流方案之一,在该方案中,所有冲突的元素都会被放到一个链表中。
- **图**:邻接表是表示图的一种常用方式,其中图的每个顶点都与一个链表相关联,链表中的每个元素都代表与该顶点相连的其他顶点。
双向链表常用于需要快速查找前一个和后一个元素的场景。
- **高级数据结构**比如在红黑树、B 树中,我们需要访问节点的父节点,这可以通过在节点中保存一个指向父节点的引用来实现,类似于双向链表。
- **浏览器历史**:在网页浏览器中,当用户点击前进或后退按钮时,浏览器需要知道用户访问过的前一个和后一个网页。双向链表的特性使得这种操作变得简单。
- **LRU 算法**在缓存淘汰LRU算法中我们需要快速找到最近最少使用的数据以及支持快速添加和删除节点。这时候使用双向链表就非常合适。
环形链表常用于需要周期性操作的场景,比如操作系统的资源调度。
- **时间片轮转调度算法**:在操作系统中,时间片轮转调度算法是一种常见的 CPU 调度算法它需要对一组进程进行循环。每个进程被赋予一个时间片当时间片用完时CPU 将切换到下一个进程。这种循环操作可以通过环形链表来实现。
- **数据缓冲区**:在某些数据缓冲区的实现中,也可能会使用环形链表。比如在音频、视频播放器中,数据流可能会被分成多个缓冲块并放入一个环形链表,以便实现无缝播放。