Polish the content.

This commit is contained in:
krahets 2023-08-21 03:57:09 +08:00
parent f5dda8d99a
commit 1aff6d6cc2
19 changed files with 44 additions and 38 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 137 KiB

After

Width:  |  Height:  |  Size: 137 KiB

View file

@ -932,10 +932,10 @@
## 链表典型应用
单向链表通常用于实现栈、队列、散列表和图等数据结构。
单向链表通常用于实现栈、队列、哈希表和图等数据结构。
- **栈与队列**:当插入和删除操作都在链表的一端进行时,它表现出先进后出的的特性,对应栈;当插入操作在链表的一端进行,删除操作在链表的另一端进行,它表现出先进先出的特性,对应队列。
- **散列表**:链地址法是解决哈希冲突的主流方案之一,在该方案中,所有冲突的元素都会被放到一个链表中。
- **哈希表**:链地址法是解决哈希冲突的主流方案之一,在该方案中,所有冲突的元素都会被放到一个链表中。
- **图**:邻接表是表示图的一种常用方式,在其中,图的每个顶点都与一个链表相关联,链表中的每个元素都代表与该顶点相连的其他顶点。
双向链表常被用于需要快速查找前一个和下一个元素的场景。

View file

@ -136,6 +136,6 @@
[class]{}-[func]{n_queens}
```
逐行放置 $n$ 次,考虑列约束,则从第一行到最后一行分别有 $n, n-1, \cdots, 2, 1$ 个选择,**因此时间复杂度为 $O(n!)$** 。实际上,根据对角线约束的剪枝也能够大幅地缩小搜索空间,因而搜索效率往往优于以上时间复杂度。
逐行放置 $n$ 次,考虑列约束,则从第一行到最后一行分别有 $n, n-1, \dots, 2, 1$ 个选择,**因此时间复杂度为 $O(n!)$** 。实际上,根据对角线约束的剪枝也能够大幅地缩小搜索空间,因而搜索效率往往优于以上时间复杂度。
数组 `state` 使用 $O(n^2)$ 空间,数组 `cols` , `diags1` , `diags2` 皆使用 $O(n)$ 空间。最大递归深度为 $n$ ,使用 $O(n)$ 栈帧空间。因此,**空间复杂度为 $O(n^2)$** 。

View file

@ -128,22 +128,22 @@
**我们考虑在搜索过程中通过剪枝进行去重**。观察下图,重复子集是在以不同顺序选择数组元素时产生的,具体来看:
1. 第一轮和第二轮分别选择 $3$ , $4$ ,会生成包含这两个元素的所有子集,记为 $[3, 4, \cdots]$ 。
2. 若第一轮选择 $4$ **则第二轮应该跳过 $3$** ,因为该选择产生的子集 $[4, 3, \cdots]$ 和 `1.` 中生成的子集完全重复。
1. 第一轮和第二轮分别选择 $3$ , $4$ ,会生成包含这两个元素的所有子集,记为 $[3, 4, \dots]$ 。
2. 若第一轮选择 $4$ **则第二轮应该跳过 $3$** ,因为该选择产生的子集 $[4, 3, \dots]$ 和 `1.` 中生成的子集完全重复。
分支越靠右,需要排除的分支也越多,例如:
1. 前两轮选择 $3$ , $5$ ,生成子集 $[3, 5, \cdots]$ 。
2. 前两轮选择 $4$ , $5$ ,生成子集 $[4, 5, \cdots]$ 。
3. 若第一轮选择 $5$ **则第二轮应该跳过 $3$ 和 $4$** ,因为子集 $[5, 3, \cdots]$ 和子集 $[5, 4, \cdots]$ 和 `1.` , `2.` 中生成的子集完全重复。
1. 前两轮选择 $3$ , $5$ ,生成子集 $[3, 5, \dots]$ 。
2. 前两轮选择 $4$ , $5$ ,生成子集 $[4, 5, \dots]$ 。
3. 若第一轮选择 $5$ **则第二轮应该跳过 $3$ 和 $4$** ,因为子集 $[5, 3, \dots]$ 和子集 $[5, 4, \dots]$ 和 `1.` , `2.` 中生成的子集完全重复。
![不同选择顺序导致的重复子集](subset_sum_problem.assets/subset_sum_i_pruning.png)
总结来看,给定输入数组 $[x_1, x_2, \cdots, x_n]$ ,设搜索过程中的选择序列为 $[x_{i_1}, x_{i_2}, \cdots , x_{i_m}]$ ,则该选择序列需要满足 $i_1 \leq i_2 \leq \cdots \leq i_m$ **不满足该条件的选择序列都会造成重复,应当剪枝**。
总结来看,给定输入数组 $[x_1, x_2, \dots, x_n]$ ,设搜索过程中的选择序列为 $[x_{i_1}, x_{i_2}, \dots , x_{i_m}]$ ,则该选择序列需要满足 $i_1 \leq i_2 \leq \dots \leq i_m$ **不满足该条件的选择序列都会造成重复,应当剪枝**。
### 代码实现
为实现该剪枝,我们初始化变量 `start` ,用于指示遍历起点。**当做出选择 $x_{i}$ 后,设定下一轮从索引 $i$ 开始遍历**。这样做就可以让选择序列满足 $i_1 \leq i_2 \leq \cdots \leq i_m$ ,从而保证子集唯一。
为实现该剪枝,我们初始化变量 `start` ,用于指示遍历起点。**当做出选择 $x_{i}$ 后,设定下一轮从索引 $i$ 开始遍历**。这样做就可以让选择序列满足 $i_1 \leq i_2 \leq \dots \leq i_m$ ,从而保证子集唯一。
除此之外,我们还对代码进行了两项优化:

View file

@ -1,13 +1,13 @@
# 复杂度
# 时空复杂度
<div class="center-table" markdown>
![复杂度](../assets/covers/chapter_complexity_analysis.jpg){ width="600" }
![时空复杂度](../assets/covers/chapter_complexity_analysis.jpg){ width="600" }
</div>
!!! abstract
复杂度犹如浩瀚的算法宇宙中的时空向导。
复杂度分析犹如浩瀚的算法宇宙中的时空向导。
它带领我们在时间与空间这两个维度上深入探索,寻找更优雅的解决方案。

View file

@ -1210,7 +1210,7 @@ $$
![常数阶、线性阶和平方阶的时间复杂度](time_complexity.assets/time_complexity_constant_linear_quadratic.png)
以冒泡排序为例,外层循环执行 $n - 1$ 次,内层循环执行 $n-1, n-2, \cdots, 2, 1$ 次,平均为 $n / 2$ 次,因此时间复杂度为 $O((n - 1) n / 2) = O(n^2)$ 。
以冒泡排序为例,外层循环执行 $n - 1$ 次,内层循环执行 $n-1, n-2, \dots, 2, 1$ 次,平均为 $n / 2$ 次,因此时间复杂度为 $O((n - 1) n / 2) = O(n^2)$ 。
=== "Java"
@ -1596,7 +1596,13 @@ $$
!!! tip
“一分为 $m$”对应的时间复杂度 $O(\log_m n)$ 。我们通常会省略底数 $m$ ,直接将其记为 $O(\log n)$ 。
准确来说,“一分为 $m$”对应的时间复杂度是 $O(\log_m n)$ 。而通过对数换底公式,我们可以得到具有不同底数的、相等的时间复杂度:
$$
O(\log_m n) = O(\log_k n / \log_k m) = O(\log_k n)
$$
因此我们通常会省略底数 $m$ ,将对数阶直接记为 $O(\log n)$ 。
### 线性对数阶 $O(n \log n)$
@ -1683,7 +1689,7 @@ $$
阶乘阶对应数学上的“全排列”问题。给定 $n$ 个互不重复的元素,求其所有可能的排列方案,方案数量为:
$$
n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1
n! = n \times (n - 1) \times (n - 2) \times \dots \times 2 \times 1
$$
阶乘通常使用递归实现。例如在以下代码中,第一层分裂出 $n$ 个,第二层分裂出 $n - 1$ 个,以此类推,直至第 $n$ 层时停止分裂:

View file

@ -15,7 +15,7 @@
!!! question "为什么哈希表同时包含线性数据结构和非线性数据结构?"
哈希表底层是数组,而为了解决哈希冲突,我们可能会使用“链式地址”(后续散列表章节会讲)。在拉链法中,数组中每个地址(桶)指向一个链表;当这个链表长度超过一定阈值时,又可能被转化为树(通常为红黑树)。因此,哈希表可能同时包含线性(数组、链表)和非线性(树)数据结构。
哈希表底层是数组,而为了解决哈希冲突,我们可能会使用“链式地址”(后续哈希表章节会讲)。在拉链法中,数组中每个地址(桶)指向一个链表;当这个链表长度超过一定阈值时,又可能被转化为树(通常为红黑树)。因此,哈希表可能同时包含线性(数组、链表)和非线性(树)数据结构。
!!! question "`char` 类型的长度是 1 byte 吗?"

View file

@ -117,7 +117,7 @@
我们可以尝试从问题分解的角度分析这道题。设爬到第 $i$ 阶共有 $dp[i]$ 种方案,那么 $dp[i]$ 就是原问题,其子问题包括:
$$
dp[i-1] , dp[i-2] , \cdots , dp[2] , dp[1]
dp[i-1] , dp[i-2] , \dots , dp[2] , dp[1]
$$
由于每轮只能上 $1$ 阶或 $2$ 阶,因此当我们站在第 $i$ 阶楼梯上时,上一轮只可能站在第 $i - 1$ 阶或第 $i - 2$ 阶上。换句话说,我们只能从第 $i -1$ 阶或第 $i - 2$ 阶前往第 $i$ 阶。

View file

@ -156,7 +156,7 @@ $$
比如在状态 $cap[i, j]$ 下,$i$ 为短板、$j$ 为长板。若贪心地将短板 $i$ 向内移动一格,会导致以下状态被“跳过”。**这意味着之后无法验证这些状态的容量大小**。
$$
cap[i, i+1], cap[i, i+2], \cdots, cap[i, j-2], cap[i, j-1]
cap[i, i+1], cap[i, i+2], \dots, cap[i, j-2], cap[i, j-1]
$$
![移动短板导致被跳过的状态](max_capacity_problem.assets/max_capacity_skipped_states.png)

View file

@ -198,8 +198,8 @@ index = hash(key) % capacity
$$
\begin{aligned}
\text{modulus} & = 9 \newline
\text{key} & = \{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \cdots \} \newline
\text{hash} & = \{ 0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6,\cdots \}
\text{key} & = \{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \dots \} \newline
\text{hash} & = \{ 0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6,\dots \}
\end{aligned}
$$
@ -208,8 +208,8 @@ $$
$$
\begin{aligned}
\text{modulus} & = 13 \newline
\text{key} & = \{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \cdots \} \newline
\text{hash} & = \{ 0, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, \cdots \}
\text{key} & = \{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \dots \} \newline
\text{hash} & = \{ 0, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, \dots \}
\end{aligned}
$$

View file

@ -204,7 +204,7 @@
### 多次哈希
顾名思义,多次哈希方法是使用多个哈希函数 $f_1(x)$ , $f_2(x)$ , $f_3(x)$ , $\cdots$ 进行探测。
顾名思义,多次哈希方法是使用多个哈希函数 $f_1(x)$ , $f_2(x)$ , $f_3(x)$ , $\dots$ 进行探测。
- **插入元素**:若哈希函数 $f_1(x)$ 出现冲突,则尝试 $f_2(x)$ ,以此类推,直到找到空位后插入元素。
- **查找元素**:在相同的哈希函数顺序下进行查找,直到找到目标元素时返回;或遇到空位或已尝试所有哈希函数,说明哈希表中不存在该元素,则返回 $\text{None}$ 。

View file

@ -1,13 +1,13 @@
# 散列
# 哈希
<div class="center-table" markdown>
![散列表](../assets/covers/chapter_hashing.jpg){ width="600" }
![哈希表](../assets/covers/chapter_hashing.jpg){ width="600" }
</div>
!!! abstract
在计算机世界中,散列表如同一位智能的图书管理员。
在计算机世界中,哈希表如同一位智能的图书管理员。
他知道如何计算索书号,从而可以快速找到目标书籍。

View file

@ -102,22 +102,22 @@
因此,我们可以将各层的“节点数量 $\times$ 节点高度”求和,**从而得到所有节点的堆化迭代次数的总和**。
$$
T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{(h-1)}\times1
T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{(h-1)}\times1
$$
化简上式需要借助中学的数列知识,先对 $T(h)$ 乘以 $2$ ,得到
$$
\begin{aligned}
T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{h-1}\times1 \newline
2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \cdots + 2^{h}\times1 \newline
T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{h-1}\times1 \newline
2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \dots + 2^{h}\times1 \newline
\end{aligned}
$$
使用错位相减法,用下式 $2 T(h)$ 减去上式 $T(h)$ ,可得
$$
2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \cdots + 2^{h-1} + 2^h
2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \dots + 2^{h-1} + 2^h
$$
观察上式,发现 $T(h)$ 是一个等比数列,可直接使用求和公式,得到时间复杂度为

View file

@ -8,7 +8,7 @@
## 方法一:遍历选择
我们可以进行 $k$ 轮遍历,分别在每轮中提取第 $1$ , $2$ , $\cdots$ , $k$ 大的元素,时间复杂度为 $O(nk)$ 。
我们可以进行 $k$ 轮遍历,分别在每轮中提取第 $1$ , $2$ , $\dots$ , $k$ 大的元素,时间复杂度为 $O(nk)$ 。
该方法只适用于 $k \ll n$ 的情况,因为当 $k$ 与 $n$ 比较接近时,其时间复杂度趋向于 $O(n^2)$ ,非常耗时。

View file

@ -23,7 +23,7 @@
本书主要内容包括:
- **复杂度分析**:数据结构和算法的评价维度与方法。时间复杂度、空间复杂度的推算方法、常见类型、示例等。
- **数据结构**:基本数据类型,数据结构的分类方法。数组、链表、栈、队列、散列表、树、堆、图等数据结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。
- **数据结构**:基本数据类型,数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。
- **算法**:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤、示例题目等。
![Hello 算法内容结构](about_the_book.assets/hello_algo_mindmap.png)

View file

@ -188,6 +188,6 @@
## 算法特性
- **时间复杂度为 $O(n^2)$ 、自适应排序** :各轮“冒泡”遍历的数组长度依次为 $n - 1$ , $n - 2$ , $\cdots$ , $2$ , $1$ ,总和为 $(n - 1) n / 2$ 。在引入 `flag` 优化后,最佳时间复杂度可达到 $O(n)$ 。
- **时间复杂度为 $O(n^2)$ 、自适应排序** :各轮“冒泡”遍历的数组长度依次为 $n - 1$ , $n - 2$ , $\dots$ , $2$ , $1$ ,总和为 $(n - 1) n / 2$ 。在引入 `flag` 优化后,最佳时间复杂度可达到 $O(n)$ 。
- **空间复杂度为 $O(1)$ 、原地排序**:指针 $i$ , $j$ 使用常数大小的额外空间。
- **稳定排序**:由于在“冒泡”中遇到相等元素不交换。

View file

@ -93,7 +93,7 @@
## 算法特性
- **时间复杂度 $O(n^2)$ 、自适应排序** :最差情况下,每次插入操作分别需要循环 $n - 1$ , $n-2$ , $\cdots$ , $2$ , $1$ 次,求和得到 $\frac{(n - 1) n}{2}$ ,因此时间复杂度为 $O(n^2)$ 。在遇到有序数据时,插入操作会提前终止。当输入数组完全有序时,插入排序达到最佳时间复杂度 $O(n)$ 。
- **时间复杂度 $O(n^2)$ 、自适应排序** :最差情况下,每次插入操作分别需要循环 $n - 1$ , $n-2$ , $\dots$ , $2$ , $1$ 次,求和得到 $(n - 1) n / 2$ ,因此时间复杂度为 $O(n^2)$ 。在遇到有序数据时,插入操作会提前终止。当输入数组完全有序时,插入排序达到最佳时间复杂度 $O(n)$ 。
- **空间复杂度 $O(1)$ 、原地排序** :指针 $i$ , $j$ 使用常数大小的额外空间。
- **稳定排序**:在插入操作过程中,我们会将元素插入到相等元素的右侧,不会改变它们的顺序。

View file

@ -119,7 +119,7 @@
## 算法特性
- **时间复杂度为 $O(n^2)$ 、非自适应排序**:外循环共 $n - 1$ 轮,第一轮的未排序区间长度为 $n$ ,最后一轮的未排序区间长度为 $2$ ,即各轮外循环分别包含 $n$ , $n - 1$ , $\cdots$ , $2$ 轮内循环,求和为 $\frac{(n - 1)(n + 2)}{2}$ 。
- **时间复杂度为 $O(n^2)$ 、非自适应排序**:外循环共 $n - 1$ 轮,第一轮的未排序区间长度为 $n$ ,最后一轮的未排序区间长度为 $2$ ,即各轮外循环分别包含 $n$ , $n - 1$ , $\dots$ , $2$ 轮内循环,求和为 $\frac{(n - 1)(n + 2)}{2}$ 。
- **空间复杂度 $O(1)$ 、原地排序**:指针 $i$ , $j$ 使用常数大小的额外空间。
- **非稳定排序**:在交换元素时,有可能将 `nums[i]` 交换至其相等元素的右边,导致两者的相对顺序发生改变。

View file

@ -144,7 +144,7 @@ nav:
- 1.1 &nbsp; 算法无处不在: chapter_introduction/algorithms_are_everywhere.md
- 1.2 &nbsp; 算法是什么: chapter_introduction/what_is_dsa.md
- 1.3 &nbsp; 小结: chapter_introduction/summary.md
- 第 2 章 &nbsp; 复杂度:
- 第 2 章 &nbsp; 时空复杂度:
# [icon: material/timer-sand]
- chapter_computational_complexity/index.md
- 2.1 &nbsp; 算法效率评估: chapter_computational_complexity/performance_evaluation.md
@ -173,7 +173,7 @@ nav:
- 5.2 &nbsp; 队列: chapter_stack_and_queue/queue.md
- 5.3 &nbsp; 双向队列: chapter_stack_and_queue/deque.md
- 5.4 &nbsp; 小结: chapter_stack_and_queue/summary.md
- 第 6 章 &nbsp; 散列表:
- 第 6 章 &nbsp; 哈希表:
# [icon: material/table-search]
- chapter_hashing/index.md
- 6.1 &nbsp; 哈希表: chapter_hashing/hash_map.md