hello-algo/docs/chapter_computational_complexity/space_time_tradeoff.md

315 lines
8.7 KiB
Markdown
Raw Normal View History

---
comments: true
---
2023-01-31 03:37:50 +08:00
# 2.4. 权衡时间与空间
2022-11-22 17:47:26 +08:00
理想情况下,我们希望算法的时间复杂度和空间复杂度都能够达到最优,而实际上,同时优化时间复杂度和空间复杂度是非常困难的。
**降低时间复杂度,往往是以提升空间复杂度为代价的,反之亦然**。我们把牺牲内存空间来提升算法运行速度的思路称为「以空间换时间」;反之,称之为「以时间换空间」。选择哪种思路取决于我们更看重哪个方面。
2022-12-14 01:30:04 +08:00
大多数情况下,时间都是比空间更宝贵的,只要空间复杂度不要太离谱、能接受就行,**因此以空间换时间最为常用**。
2022-11-22 17:47:26 +08:00
2023-01-31 03:37:50 +08:00
## 2.4.1. 示例题目 *
2022-11-22 17:47:26 +08:00
2023-01-18 19:56:56 +08:00
以 LeetCode 全站第一题 [两数之和](https://leetcode.cn/problems/two-sum/) 为例。
!!! question "两数之和"
给定一个整数数组 `nums` 和一个整数目标值 `target` ,请你在该数组中找出“和”为目标值 `target` 的那两个整数,并返回它们的数组下标。
2023-01-18 19:56:56 +08:00
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
「暴力枚举」和「辅助哈希表」分别为 **空间最优****时间最优** 的两种解法。本着时间比空间更宝贵的原则,后者是本题的最佳解法。
2022-11-22 17:47:26 +08:00
### 方法一:暴力枚举
时间复杂度 $O(N^2)$ ,空间复杂度 $O(1)$ ,属于「时间换空间」。
虽然仅使用常数大小的额外空间,但运行速度过慢。
=== "Java"
2022-12-03 01:31:29 +08:00
```java title="leetcode_two_sum.java"
[class]{SolutionBruteForce}-[func]{}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="leetcode_two_sum.cpp"
2023-02-08 04:17:26 +08:00
[class]{SolutionBruteForce}-[func]{}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="leetcode_two_sum.py"
[class]{SolutionBruteForce}-[func]{}
2022-11-22 17:47:26 +08:00
```
=== "Go"
```go title="leetcode_two_sum.go"
func twoSumBruteForce(nums []int, target int) []int {
size := len(nums)
// 两层循环,时间复杂度 O(n^2)
for i := 0; i < size-1; i++ {
for j := i + 1; i < size; j++ {
if nums[i]+nums[j] == target {
return []int{i, j}
}
}
}
return nil
}
```
2022-12-03 01:31:29 +08:00
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="leetcode_two_sum.js"
function twoSumBruteForce(nums, target) {
2022-12-16 16:27:13 +08:00
const n = nums.length;
2022-12-15 23:50:08 +08:00
// 两层循环,时间复杂度 O(n^2)
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
if (nums[i] + nums[j] === target) {
return [i, j];
}
}
}
2022-12-16 16:27:13 +08:00
return [];
}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="leetcode_two_sum.ts"
function twoSumBruteForce(nums: number[], target: number): number[] {
2022-12-16 16:33:12 +08:00
const n = nums.length;
2022-12-16 00:11:06 +08:00
// 两层循环,时间复杂度 O(n^2)
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
if (nums[i] + nums[j] === target) {
return [i, j];
}
}
}
2022-12-16 00:11:06 +08:00
return [];
};
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="leetcode_two_sum.c"
```
=== "C#"
```csharp title="leetcode_two_sum.cs"
2022-12-23 15:42:02 +08:00
class SolutionBruteForce
{
public int[] twoSum(int[] nums, int target)
{
int size = nums.Length;
// 两层循环,时间复杂度 O(n^2)
for (int i = 0; i < size - 1; i++)
{
for (int j = i + 1; j < size; j++)
{
if (nums[i] + nums[j] == target)
return new int[] { i, j };
}
}
return new int[0];
}
}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="leetcode_two_sum.swift"
func twoSumBruteForce(nums: [Int], target: Int) -> [Int] {
// 两层循环,时间复杂度 O(n^2)
for i in nums.indices.dropLast() {
for j in nums.indices.dropFirst(i + 1) {
if nums[i] + nums[j] == target {
return [i, j]
}
}
}
return [0]
}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="leetcode_two_sum.zig"
const SolutionBruteForce = struct {
pub fn twoSum(self: *SolutionBruteForce, nums: []i32, target: i32) [2]i32 {
_ = self;
var size: usize = nums.len;
var i: usize = 0;
// 两层循环,时间复杂度 O(n^2)
while (i < size - 1) : (i += 1) {
var j = i + 1;
while (j < size) : (j += 1) {
if (nums[i] + nums[j] == target) {
return [_]i32{@intCast(i32, i), @intCast(i32, j)};
}
}
}
return undefined;
}
};
2023-02-01 22:03:04 +08:00
```
2022-11-22 17:47:26 +08:00
### 方法二:辅助哈希表
时间复杂度 $O(N)$ ,空间复杂度 $O(N)$ ,属于「空间换时间」。
借助辅助哈希表 dic ,通过保存数组元素与索引的映射来提升算法运行速度。
=== "Java"
2022-12-03 01:31:29 +08:00
```java title="leetcode_two_sum.java"
[class]{SolutionHashMap}-[func]{}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="leetcode_two_sum.cpp"
2023-02-08 04:17:26 +08:00
[class]{SolutionHashMap}-[func]{}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="leetcode_two_sum.py"
[class]{SolutionHashMap}-[func]{}
2022-11-22 17:47:26 +08:00
```
=== "Go"
```go title="leetcode_two_sum.go"
func twoSumHashTable(nums []int, target int) []int {
// 辅助哈希表,空间复杂度 O(n)
hashTable := map[int]int{}
// 单层循环,时间复杂度 O(n)
for idx, val := range nums {
if preIdx, ok := hashTable[target-val]; ok {
return []int{preIdx, idx}
}
hashTable[val] = idx
}
return nil
}
```
2022-12-03 01:31:29 +08:00
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="leetcode_two_sum.js"
function twoSumHashTable(nums, target) {
// 辅助哈希表,空间复杂度 O(n)
2022-12-15 23:50:08 +08:00
let m = {};
// 单层循环,时间复杂度 O(n)
for (let i = 0; i < nums.length; i++) {
if (m[nums[i]] !== undefined) {
2022-12-15 23:50:08 +08:00
return [m[nums[i]], i];
} else {
m[target - nums[i]] = i;
}
}
2022-12-16 16:27:13 +08:00
return [];
}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="leetcode_two_sum.ts"
function twoSumHashTable(nums: number[], target: number): number[] {
2022-12-15 23:48:03 +08:00
// 辅助哈希表,空间复杂度 O(n)
let m: Map<number, number> = new Map();
// 单层循环,时间复杂度 O(n)
for (let i = 0; i < nums.length; i++) {
let index = m.get(nums[i]);
if (index !== undefined) {
return [index, i];
} else {
m.set(target - nums[i], i);
}
}
2022-12-15 23:48:03 +08:00
return [];
};
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="leetcode_two_sum.c"
```
=== "C#"
```csharp title="leetcode_two_sum.cs"
2022-12-23 15:42:02 +08:00
class SolutionHashMap
{
public int[] twoSum(int[] nums, int target)
{
int size = nums.Length;
// 辅助哈希表,空间复杂度 O(n)
Dictionary<int, int> dic = new();
// 单层循环,时间复杂度 O(n)
for (int i = 0; i < size; i++)
{
if (dic.ContainsKey(target - nums[i]))
{
return new int[] { dic[target - nums[i]], i };
}
dic.Add(nums[i], i);
}
return new int[0];
}
}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="leetcode_two_sum.swift"
func twoSumHashTable(nums: [Int], target: Int) -> [Int] {
// 辅助哈希表,空间复杂度 O(n)
var dic: [Int: Int] = [:]
// 单层循环,时间复杂度 O(n)
for i in nums.indices {
if let j = dic[target - nums[i]] {
return [j, i]
}
dic[nums[i]] = i
}
return [0]
}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="leetcode_two_sum.zig"
const SolutionHashMap = struct {
pub fn twoSum(self: *SolutionHashMap, nums: []i32, target: i32) ![2]i32 {
_ = self;
var size: usize = nums.len;
// 辅助哈希表,空间复杂度 O(n)
var dic = std.AutoHashMap(i32, i32).init(std.heap.page_allocator);
defer dic.deinit();
var i: usize = 0;
// 单层循环,时间复杂度 O(n)
while (i < size) : (i += 1) {
if (dic.contains(target - nums[i])) {
return [_]i32{dic.get(target - nums[i]).?, @intCast(i32, i)};
}
try dic.put(nums[i], @intCast(i32, i));
}
return undefined;
}
};
2023-02-01 22:03:04 +08:00
```