mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 13:26:30 +08:00
dcc3b2e35b
in java, cpp, py, go, js, ts.
2 KiB
2 KiB
堆
「堆 Heap」是一种特殊的树状数据结构,并且是一颗「完全二叉树」。堆主要分为两种:
- 「大顶堆 Max Heap」,任意结点的值
\geq
其子结点的值,因此根结点的值最大; - 「小顶堆 Min Heap」,任意结点的值
\leq
其子结点的值,因此根结点的值最小;
(图)
!!! tip ""
大顶堆和小顶堆的定义、性质、操作本质上是相同的,区别只是大顶堆在求最大值,小顶堆在求最小值。
堆常用操作
值得说明的是,多数编程语言提供的是「优先队列 Priority Queue」,其是一种抽象数据结构,定义为具有出队优先级的队列。
而恰好,堆的定义与优先队列的操作逻辑完全吻合,大顶堆就是一个元素从大到小出队的优先队列。从使用角度看,我们可以将「优先队列」和「堆」理解为等价的数据结构,下文将统一使用 “堆” 这个名称。
堆的常用操作见下表(方法命名以 Java 为例)。
Table. 堆的常用操作
方法 | 描述 |
---|---|
add() | 元素入堆 |
poll() | 堆顶元素出堆 |
peek() | 访问堆顶元素(大 / 小顶堆分别为最大 / 小值) |
size() | 获取堆的元素数量 |
isEmpty() | 判断堆是否为空 |
堆的实现
!!! tip
下文使用「大顶堆」来举例,「小顶堆」的用法与实现可以简单地将所有 $>$ ($<$) 替换为 $<$ ($>$) 即可。
我们一般使用「数组」来存储「堆」,这是因为完全二叉树非常适合用数组来表示(在二叉树章节有详细解释)。
堆常见应用
- 优先队列。
- 堆排序。
- 获取数据 Top K 大(小)元素。