mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-28 05:16:28 +08:00
1937 lines
54 KiB
Markdown
Executable file
1937 lines
54 KiB
Markdown
Executable file
---
|
||
comments: true
|
||
---
|
||
|
||
# 5.2. 队列
|
||
|
||
「队列 Queue」是一种遵循先入先出(First In, First Out)规则的线性数据结构。顾名思义,队列模拟了排队现象,即新来的人不断加入队列的尾部,而位于队列头部的人逐个离开。
|
||
|
||
我们把队列的头部称为「队首」,尾部称为「队尾」,把将元素加入队尾的操作称为「入队」,删除队首元素的操作称为「出队」。
|
||
|
||
![队列的先入先出规则](queue.assets/queue_operations.png)
|
||
|
||
<p align="center"> Fig. 队列的先入先出规则 </p>
|
||
|
||
## 5.2.1. 队列常用操作
|
||
|
||
队列的常见操作如下表所示。需要注意的是,不同编程语言的方法名称可能会有所不同。我们在此采用与栈相同的方法命名。
|
||
|
||
<div class="center-table" markdown>
|
||
|
||
| 方法名 | 描述 | 时间复杂度 |
|
||
| --------- | -------------------------- | -------- |
|
||
| push() | 元素入队,即将元素添加至队尾 | $O(1)$ |
|
||
| pop() | 队首元素出队 | $O(1)$ |
|
||
| peek() | 访问队首元素 | $O(1)$ |
|
||
|
||
</div>
|
||
|
||
我们可以直接使用编程语言中现成的队列类。
|
||
|
||
=== "Java"
|
||
|
||
```java title="queue.java"
|
||
/* 初始化队列 */
|
||
Queue<Integer> queue = new LinkedList<>();
|
||
|
||
/* 元素入队 */
|
||
queue.offer(1);
|
||
queue.offer(3);
|
||
queue.offer(2);
|
||
queue.offer(5);
|
||
queue.offer(4);
|
||
|
||
/* 访问队首元素 */
|
||
int peek = queue.peek();
|
||
|
||
/* 元素出队 */
|
||
int pop = queue.poll();
|
||
|
||
/* 获取队列的长度 */
|
||
int size = queue.size();
|
||
|
||
/* 判断队列是否为空 */
|
||
boolean isEmpty = queue.isEmpty();
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="queue.cpp"
|
||
/* 初始化队列 */
|
||
queue<int> queue;
|
||
|
||
/* 元素入队 */
|
||
queue.push(1);
|
||
queue.push(3);
|
||
queue.push(2);
|
||
queue.push(5);
|
||
queue.push(4);
|
||
|
||
/* 访问队首元素 */
|
||
int front = queue.front();
|
||
|
||
/* 元素出队 */
|
||
queue.pop();
|
||
|
||
/* 获取队列的长度 */
|
||
int size = queue.size();
|
||
|
||
/* 判断队列是否为空 */
|
||
bool empty = queue.empty();
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="queue.py"
|
||
# 初始化队列
|
||
# 在 Python 中,我们一般将双向队列类 deque 看作队列使用
|
||
# 虽然 queue.Queue() 是纯正的队列类,但不太好用,因此不建议
|
||
que: Deque[int] = collections.deque()
|
||
|
||
# 元素入队
|
||
que.append(1)
|
||
que.append(3)
|
||
que.append(2)
|
||
que.append(5)
|
||
que.append(4)
|
||
|
||
# 访问队首元素
|
||
front: int = que[0];
|
||
|
||
# 元素出队
|
||
pop: int = que.popleft()
|
||
|
||
# 获取队列的长度
|
||
size: int = len(que)
|
||
|
||
# 判断队列是否为空
|
||
is_empty: bool = len(que) == 0
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="queue_test.go"
|
||
/* 初始化队列 */
|
||
// 在 Go 中,将 list 作为队列来使用
|
||
queue := list.New()
|
||
|
||
/* 元素入队 */
|
||
queue.PushBack(1)
|
||
queue.PushBack(3)
|
||
queue.PushBack(2)
|
||
queue.PushBack(5)
|
||
queue.PushBack(4)
|
||
|
||
/* 访问队首元素 */
|
||
peek := queue.Front()
|
||
|
||
/* 元素出队 */
|
||
pop := queue.Front()
|
||
queue.Remove(pop)
|
||
|
||
/* 获取队列的长度 */
|
||
size := queue.Len()
|
||
|
||
/* 判断队列是否为空 */
|
||
isEmpty := queue.Len() == 0
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="queue.js"
|
||
/* 初始化队列 */
|
||
// JavaScript 没有内置的队列,可以把 Array 当作队列来使用
|
||
const queue = [];
|
||
|
||
/* 元素入队 */
|
||
queue.push(1);
|
||
queue.push(3);
|
||
queue.push(2);
|
||
queue.push(5);
|
||
queue.push(4);
|
||
|
||
/* 访问队首元素 */
|
||
const peek = queue[0];
|
||
|
||
/* 元素出队 */
|
||
// 底层是数组,因此 shift() 方法的时间复杂度为 O(n)
|
||
const pop = queue.shift();
|
||
|
||
/* 获取队列的长度 */
|
||
const size = queue.length;
|
||
|
||
/* 判断队列是否为空 */
|
||
const empty = queue.length === 0;
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="queue.ts"
|
||
/* 初始化队列 */
|
||
// TypeScript 没有内置的队列,可以把 Array 当作队列来使用
|
||
const queue: number[] = [];
|
||
|
||
/* 元素入队 */
|
||
queue.push(1);
|
||
queue.push(3);
|
||
queue.push(2);
|
||
queue.push(5);
|
||
queue.push(4);
|
||
|
||
/* 访问队首元素 */
|
||
const peek = queue[0];
|
||
|
||
/* 元素出队 */
|
||
// 底层是数组,因此 shift() 方法的时间复杂度为 O(n)
|
||
const pop = queue.shift();
|
||
|
||
/* 获取队列的长度 */
|
||
const size = queue.length;
|
||
|
||
/* 判断队列是否为空 */
|
||
const empty = queue.length === 0;
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="queue.c"
|
||
// C 未提供内置队列
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="queue.cs"
|
||
/* 初始化队列 */
|
||
Queue<int> queue = new();
|
||
|
||
/* 元素入队 */
|
||
queue.Enqueue(1);
|
||
queue.Enqueue(3);
|
||
queue.Enqueue(2);
|
||
queue.Enqueue(5);
|
||
queue.Enqueue(4);
|
||
|
||
/* 访问队首元素 */
|
||
int peek = queue.Peek();
|
||
|
||
/* 元素出队 */
|
||
int pop = queue.Dequeue();
|
||
|
||
/* 获取队列的长度 */
|
||
int size = queue.Count();
|
||
|
||
/* 判断队列是否为空 */
|
||
bool isEmpty = queue.Count() == 0;
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="queue.swift"
|
||
/* 初始化队列 */
|
||
// Swift 没有内置的队列类,可以把 Array 当作队列来使用
|
||
var queue: [Int] = []
|
||
|
||
/* 元素入队 */
|
||
queue.append(1)
|
||
queue.append(3)
|
||
queue.append(2)
|
||
queue.append(5)
|
||
queue.append(4)
|
||
|
||
/* 访问队首元素 */
|
||
let peek = queue.first!
|
||
|
||
/* 元素出队 */
|
||
// 由于是数组,因此 removeFirst 的复杂度为 O(n)
|
||
let pool = queue.removeFirst()
|
||
|
||
/* 获取队列的长度 */
|
||
let size = queue.count
|
||
|
||
/* 判断队列是否为空 */
|
||
let isEmpty = queue.isEmpty
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="queue.zig"
|
||
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="queue.dart"
|
||
/* 初始化队列 */
|
||
// 在 Dart 中,队列类 Qeque 是双向队列,也可作为队列使用
|
||
Queue<int> queue = Queue();
|
||
|
||
/* 元素入队 */
|
||
queue.add(1);
|
||
queue.add(3);
|
||
queue.add(2);
|
||
queue.add(5);
|
||
queue.add(4);
|
||
|
||
/* 访问队首元素 */
|
||
int peek = queue.first;
|
||
|
||
/* 元素出队 */
|
||
int pop = queue.removeFirst();
|
||
|
||
/* 获取队列的长度 */
|
||
int size = queue.length;
|
||
|
||
/* 判断队列是否为空 */
|
||
bool isEmpty = queue.isEmpty;
|
||
```
|
||
|
||
## 5.2.2. 队列实现
|
||
|
||
为了实现队列,我们需要一种数据结构,可以在一端添加元素,并在另一端删除元素。因此,链表和数组都可以用来实现队列。
|
||
|
||
### 基于链表的实现
|
||
|
||
对于链表实现,我们可以将链表的「头节点」和「尾节点」分别视为队首和队尾,规定队尾仅可添加节点,而队首仅可删除节点。
|
||
|
||
=== "LinkedListQueue"
|
||
![基于链表实现队列的入队出队操作](queue.assets/linkedlist_queue.png)
|
||
|
||
=== "push()"
|
||
![linkedlist_queue_push](queue.assets/linkedlist_queue_push.png)
|
||
|
||
=== "pop()"
|
||
![linkedlist_queue_pop](queue.assets/linkedlist_queue_pop.png)
|
||
|
||
以下是用链表实现队列的示例代码。
|
||
|
||
=== "Java"
|
||
|
||
```java title="linkedlist_queue.java"
|
||
/* 基于链表实现的队列 */
|
||
class LinkedListQueue {
|
||
private ListNode front, rear; // 头节点 front ,尾节点 rear
|
||
private int queSize = 0;
|
||
|
||
public LinkedListQueue() {
|
||
front = null;
|
||
rear = null;
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
public int size() {
|
||
return queSize;
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
public boolean isEmpty() {
|
||
return size() == 0;
|
||
}
|
||
|
||
/* 入队 */
|
||
public void push(int num) {
|
||
// 尾节点后添加 num
|
||
ListNode node = new ListNode(num);
|
||
// 如果队列为空,则令头、尾节点都指向该节点
|
||
if (front == null) {
|
||
front = node;
|
||
rear = node;
|
||
// 如果队列不为空,则将该节点添加到尾节点后
|
||
} else {
|
||
rear.next = node;
|
||
rear = node;
|
||
}
|
||
queSize++;
|
||
}
|
||
|
||
/* 出队 */
|
||
public int pop() {
|
||
int num = peek();
|
||
// 删除头节点
|
||
front = front.next;
|
||
queSize--;
|
||
return num;
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
public int peek() {
|
||
if (size() == 0)
|
||
throw new IndexOutOfBoundsException();
|
||
return front.val;
|
||
}
|
||
|
||
/* 将链表转化为 Array 并返回 */
|
||
public int[] toArray() {
|
||
ListNode node = front;
|
||
int[] res = new int[size()];
|
||
for (int i = 0; i < res.length; i++) {
|
||
res[i] = node.val;
|
||
node = node.next;
|
||
}
|
||
return res;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="linkedlist_queue.cpp"
|
||
/* 基于链表实现的队列 */
|
||
class LinkedListQueue {
|
||
private:
|
||
ListNode *front, *rear; // 头节点 front ,尾节点 rear
|
||
int queSize;
|
||
|
||
public:
|
||
LinkedListQueue() {
|
||
front = nullptr;
|
||
rear = nullptr;
|
||
queSize = 0;
|
||
}
|
||
|
||
~LinkedListQueue() {
|
||
// 遍历链表删除节点,释放内存
|
||
freeMemoryLinkedList(front);
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
int size() {
|
||
return queSize;
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
bool empty() {
|
||
return queSize == 0;
|
||
}
|
||
|
||
/* 入队 */
|
||
void push(int num) {
|
||
// 尾节点后添加 num
|
||
ListNode *node = new ListNode(num);
|
||
// 如果队列为空,则令头、尾节点都指向该节点
|
||
if (front == nullptr) {
|
||
front = node;
|
||
rear = node;
|
||
}
|
||
// 如果队列不为空,则将该节点添加到尾节点后
|
||
else {
|
||
rear->next = node;
|
||
rear = node;
|
||
}
|
||
queSize++;
|
||
}
|
||
|
||
/* 出队 */
|
||
void pop() {
|
||
int num = peek();
|
||
// 删除头节点
|
||
ListNode *tmp = front;
|
||
front = front->next;
|
||
// 释放内存
|
||
delete tmp;
|
||
queSize--;
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
int peek() {
|
||
if (size() == 0)
|
||
throw out_of_range("队列为空");
|
||
return front->val;
|
||
}
|
||
|
||
/* 将链表转化为 Vector 并返回 */
|
||
vector<int> toVector() {
|
||
ListNode *node = front;
|
||
vector<int> res(size());
|
||
for (int i = 0; i < res.size(); i++) {
|
||
res[i] = node->val;
|
||
node = node->next;
|
||
}
|
||
return res;
|
||
}
|
||
};
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="linkedlist_queue.py"
|
||
class LinkedListQueue:
|
||
"""基于链表实现的队列"""
|
||
|
||
def __init__(self):
|
||
"""构造方法"""
|
||
self.__front: ListNode | None = None # 头节点 front
|
||
self.__rear: ListNode | None = None # 尾节点 rear
|
||
self.__size: int = 0
|
||
|
||
def size(self) -> int:
|
||
"""获取队列的长度"""
|
||
return self.__size
|
||
|
||
def is_empty(self) -> bool:
|
||
"""判断队列是否为空"""
|
||
return not self.__front
|
||
|
||
def push(self, num: int) -> None:
|
||
"""入队"""
|
||
# 尾节点后添加 num
|
||
node = ListNode(num)
|
||
# 如果队列为空,则令头、尾节点都指向该节点
|
||
if self.__front is None:
|
||
self.__front = node
|
||
self.__rear = node
|
||
# 如果队列不为空,则将该节点添加到尾节点后
|
||
else:
|
||
self.__rear.next = node
|
||
self.__rear = node
|
||
self.__size += 1
|
||
|
||
def pop(self) -> int:
|
||
"""出队"""
|
||
num = self.peek()
|
||
# 删除头节点
|
||
self.__front = self.__front.next
|
||
self.__size -= 1
|
||
return num
|
||
|
||
def peek(self) -> int:
|
||
"""访问队首元素"""
|
||
if self.size() == 0:
|
||
print("队列为空")
|
||
return False
|
||
return self.__front.val
|
||
|
||
def to_list(self) -> list[int]:
|
||
"""转化为列表用于打印"""
|
||
queue = []
|
||
temp = self.__front
|
||
while temp:
|
||
queue.append(temp.val)
|
||
temp = temp.next
|
||
return queue
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="linkedlist_queue.go"
|
||
/* 基于链表实现的队列 */
|
||
type linkedListQueue struct {
|
||
// 使用内置包 list 来实现队列
|
||
data *list.List
|
||
}
|
||
|
||
/* 初始化队列 */
|
||
func newLinkedListQueue() *linkedListQueue {
|
||
return &linkedListQueue{
|
||
data: list.New(),
|
||
}
|
||
}
|
||
|
||
/* 入队 */
|
||
func (s *linkedListQueue) push(value any) {
|
||
s.data.PushBack(value)
|
||
}
|
||
|
||
/* 出队 */
|
||
func (s *linkedListQueue) pop() any {
|
||
if s.isEmpty() {
|
||
return nil
|
||
}
|
||
e := s.data.Front()
|
||
s.data.Remove(e)
|
||
return e.Value
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
func (s *linkedListQueue) peek() any {
|
||
if s.isEmpty() {
|
||
return nil
|
||
}
|
||
e := s.data.Front()
|
||
return e.Value
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
func (s *linkedListQueue) size() int {
|
||
return s.data.Len()
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
func (s *linkedListQueue) isEmpty() bool {
|
||
return s.data.Len() == 0
|
||
}
|
||
|
||
/* 获取 List 用于打印 */
|
||
func (s *linkedListQueue) toList() *list.List {
|
||
return s.data
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="linkedlist_queue.js"
|
||
/* 基于链表实现的队列 */
|
||
class LinkedListQueue {
|
||
#front; // 头节点 #front
|
||
#rear; // 尾节点 #rear
|
||
#queSize = 0;
|
||
|
||
constructor() {
|
||
this.#front = null;
|
||
this.#rear = null;
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
get size() {
|
||
return this.#queSize;
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
isEmpty() {
|
||
return this.size === 0;
|
||
}
|
||
|
||
/* 入队 */
|
||
push(num) {
|
||
// 尾节点后添加 num
|
||
const node = new ListNode(num);
|
||
// 如果队列为空,则令头、尾节点都指向该节点
|
||
if (!this.#front) {
|
||
this.#front = node;
|
||
this.#rear = node;
|
||
// 如果队列不为空,则将该节点添加到尾节点后
|
||
} else {
|
||
this.#rear.next = node;
|
||
this.#rear = node;
|
||
}
|
||
this.#queSize++;
|
||
}
|
||
|
||
/* 出队 */
|
||
pop() {
|
||
const num = this.peek();
|
||
// 删除头节点
|
||
this.#front = this.#front.next;
|
||
this.#queSize--;
|
||
return num;
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
peek() {
|
||
if (this.size === 0) throw new Error('队列为空');
|
||
return this.#front.val;
|
||
}
|
||
|
||
/* 将链表转化为 Array 并返回 */
|
||
toArray() {
|
||
let node = this.#front;
|
||
const res = new Array(this.size);
|
||
for (let i = 0; i < res.length; i++) {
|
||
res[i] = node.val;
|
||
node = node.next;
|
||
}
|
||
return res;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="linkedlist_queue.ts"
|
||
/* 基于链表实现的队列 */
|
||
class LinkedListQueue {
|
||
private front: ListNode | null; // 头节点 front
|
||
private rear: ListNode | null; // 尾节点 rear
|
||
private queSize: number = 0;
|
||
|
||
constructor() {
|
||
this.front = null;
|
||
this.rear = null;
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
get size(): number {
|
||
return this.queSize;
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
isEmpty(): boolean {
|
||
return this.size === 0;
|
||
}
|
||
|
||
/* 入队 */
|
||
push(num: number): void {
|
||
// 尾节点后添加 num
|
||
const node = new ListNode(num);
|
||
// 如果队列为空,则令头、尾节点都指向该节点
|
||
if (!this.front) {
|
||
this.front = node;
|
||
this.rear = node;
|
||
// 如果队列不为空,则将该节点添加到尾节点后
|
||
} else {
|
||
this.rear!.next = node;
|
||
this.rear = node;
|
||
}
|
||
this.queSize++;
|
||
}
|
||
|
||
/* 出队 */
|
||
pop(): number {
|
||
const num = this.peek();
|
||
if (!this.front) throw new Error('队列为空');
|
||
// 删除头节点
|
||
this.front = this.front.next;
|
||
this.queSize--;
|
||
return num;
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
peek(): number {
|
||
if (this.size === 0) throw new Error('队列为空');
|
||
return this.front!.val;
|
||
}
|
||
|
||
/* 将链表转化为 Array 并返回 */
|
||
toArray(): number[] {
|
||
let node = this.front;
|
||
const res = new Array<number>(this.size);
|
||
for (let i = 0; i < res.length; i++) {
|
||
res[i] = node!.val;
|
||
node = node!.next;
|
||
}
|
||
return res;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="linkedlist_queue.c"
|
||
/* 基于链表实现的队列 */
|
||
struct linkedListQueue {
|
||
ListNode *front, *rear;
|
||
int queSize;
|
||
};
|
||
|
||
typedef struct linkedListQueue linkedListQueue;
|
||
|
||
/* 构造函数 */
|
||
linkedListQueue *newLinkedListQueue() {
|
||
linkedListQueue *queue = (linkedListQueue *)malloc(sizeof(linkedListQueue));
|
||
queue->front = NULL;
|
||
queue->rear = NULL;
|
||
queue->queSize = 0;
|
||
return queue;
|
||
}
|
||
|
||
/* 析构函数 */
|
||
void delLinkedListQueue(linkedListQueue *queue) {
|
||
// 释放所有节点
|
||
for (int i = 0; i < queue->queSize && queue->front != NULL; i++) {
|
||
ListNode *tmp = queue->front;
|
||
queue->front = queue->front->next;
|
||
free(tmp);
|
||
}
|
||
// 释放 queue 结构体
|
||
free(queue);
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
int size(linkedListQueue *queue) {
|
||
return queue->queSize;
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
bool empty(linkedListQueue *queue) {
|
||
return (size(queue) == 0);
|
||
}
|
||
|
||
/* 入队 */
|
||
void push(linkedListQueue *queue, int num) {
|
||
// 尾节点处添加 node
|
||
ListNode *node = newListNode(num);
|
||
// 如果队列为空,则令头、尾节点都指向该节点
|
||
if (queue->front == NULL) {
|
||
queue->front = node;
|
||
queue->rear = node;
|
||
}
|
||
// 如果队列不为空,则将该节点添加到尾节点后
|
||
else {
|
||
queue->rear->next = node;
|
||
queue->rear = node;
|
||
}
|
||
queue->queSize++;
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
int peek(linkedListQueue *queue) {
|
||
assert(size(queue) && queue->front);
|
||
return queue->front->val;
|
||
}
|
||
|
||
/* 出队 */
|
||
void pop(linkedListQueue *queue) {
|
||
int num = peek(queue);
|
||
ListNode *tmp = queue->front;
|
||
queue->front = queue->front->next;
|
||
free(tmp);
|
||
queue->queSize--;
|
||
}
|
||
|
||
/* 打印队列 */
|
||
void printLinkedListQueue(linkedListQueue *queue) {
|
||
int arr[queue->queSize];
|
||
// 拷贝链表中的数据到数组
|
||
int i;
|
||
ListNode *node;
|
||
for (i = 0, node = queue->front; i < queue->queSize && queue->front != queue->rear; i++) {
|
||
arr[i] = node->val;
|
||
node = node->next;
|
||
}
|
||
printArray(arr, queue->queSize);
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="linkedlist_queue.cs"
|
||
/* 基于链表实现的队列 */
|
||
class LinkedListQueue {
|
||
private ListNode? front, rear; // 头节点 front ,尾节点 rear
|
||
private int queSize = 0;
|
||
|
||
public LinkedListQueue() {
|
||
front = null;
|
||
rear = null;
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
public int size() {
|
||
return queSize;
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
public bool isEmpty() {
|
||
return size() == 0;
|
||
}
|
||
|
||
/* 入队 */
|
||
public void push(int num) {
|
||
// 尾节点后添加 num
|
||
ListNode node = new ListNode(num);
|
||
// 如果队列为空,则令头、尾节点都指向该节点
|
||
if (front == null) {
|
||
front = node;
|
||
rear = node;
|
||
// 如果队列不为空,则将该节点添加到尾节点后
|
||
} else if (rear != null) {
|
||
rear.next = node;
|
||
rear = node;
|
||
}
|
||
queSize++;
|
||
}
|
||
|
||
/* 出队 */
|
||
public int pop() {
|
||
int num = peek();
|
||
// 删除头节点
|
||
front = front?.next;
|
||
queSize--;
|
||
return num;
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
public int peek() {
|
||
if (size() == 0 || front == null)
|
||
throw new Exception();
|
||
return front.val;
|
||
}
|
||
|
||
/* 将链表转化为 Array 并返回 */
|
||
public int[] toArray() {
|
||
if (front == null)
|
||
return Array.Empty<int>();
|
||
|
||
ListNode node = front;
|
||
int[] res = new int[size()];
|
||
for (int i = 0; i < res.Length; i++) {
|
||
res[i] = node.val;
|
||
node = node.next;
|
||
}
|
||
return res;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="linkedlist_queue.swift"
|
||
/* 基于链表实现的队列 */
|
||
class LinkedListQueue {
|
||
private var front: ListNode? // 头节点
|
||
private var rear: ListNode? // 尾节点
|
||
private var _size = 0
|
||
|
||
init() {}
|
||
|
||
/* 获取队列的长度 */
|
||
func size() -> Int {
|
||
_size
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
func isEmpty() -> Bool {
|
||
size() == 0
|
||
}
|
||
|
||
/* 入队 */
|
||
func push(num: Int) {
|
||
// 尾节点后添加 num
|
||
let node = ListNode(x: num)
|
||
// 如果队列为空,则令头、尾节点都指向该节点
|
||
if front == nil {
|
||
front = node
|
||
rear = node
|
||
}
|
||
// 如果队列不为空,则将该节点添加到尾节点后
|
||
else {
|
||
rear?.next = node
|
||
rear = node
|
||
}
|
||
_size += 1
|
||
}
|
||
|
||
/* 出队 */
|
||
@discardableResult
|
||
func pop() -> Int {
|
||
let num = peek()
|
||
// 删除头节点
|
||
front = front?.next
|
||
_size -= 1
|
||
return num
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
func peek() -> Int {
|
||
if isEmpty() {
|
||
fatalError("队列为空")
|
||
}
|
||
return front!.val
|
||
}
|
||
|
||
/* 将链表转化为 Array 并返回 */
|
||
func toArray() -> [Int] {
|
||
var node = front
|
||
var res = Array(repeating: 0, count: size())
|
||
for i in res.indices {
|
||
res[i] = node!.val
|
||
node = node?.next
|
||
}
|
||
return res
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="linkedlist_queue.zig"
|
||
// 基于链表实现的队列
|
||
fn LinkedListQueue(comptime T: type) type {
|
||
return struct {
|
||
const Self = @This();
|
||
|
||
front: ?*inc.ListNode(T) = null, // 头节点 front
|
||
rear: ?*inc.ListNode(T) = null, // 尾节点 rear
|
||
que_size: usize = 0, // 队列的长度
|
||
mem_arena: ?std.heap.ArenaAllocator = null,
|
||
mem_allocator: std.mem.Allocator = undefined, // 内存分配器
|
||
|
||
// 构造方法(分配内存+初始化队列)
|
||
pub fn init(self: *Self, allocator: std.mem.Allocator) !void {
|
||
if (self.mem_arena == null) {
|
||
self.mem_arena = std.heap.ArenaAllocator.init(allocator);
|
||
self.mem_allocator = self.mem_arena.?.allocator();
|
||
}
|
||
self.front = null;
|
||
self.rear = null;
|
||
self.que_size = 0;
|
||
}
|
||
|
||
// 析构方法(释放内存)
|
||
pub fn deinit(self: *Self) void {
|
||
if (self.mem_arena == null) return;
|
||
self.mem_arena.?.deinit();
|
||
}
|
||
|
||
// 获取队列的长度
|
||
pub fn size(self: *Self) usize {
|
||
return self.que_size;
|
||
}
|
||
|
||
// 判断队列是否为空
|
||
pub fn isEmpty(self: *Self) bool {
|
||
return self.size() == 0;
|
||
}
|
||
|
||
// 访问队首元素
|
||
pub fn peek(self: *Self) T {
|
||
if (self.size() == 0) @panic("队列为空");
|
||
return self.front.?.val;
|
||
}
|
||
|
||
// 入队
|
||
pub fn push(self: *Self, num: T) !void {
|
||
// 尾节点后添加 num
|
||
var node = try self.mem_allocator.create(inc.ListNode(T));
|
||
node.init(num);
|
||
// 如果队列为空,则令头、尾节点都指向该节点
|
||
if (self.front == null) {
|
||
self.front = node;
|
||
self.rear = node;
|
||
// 如果队列不为空,则将该节点添加到尾节点后
|
||
} else {
|
||
self.rear.?.next = node;
|
||
self.rear = node;
|
||
}
|
||
self.que_size += 1;
|
||
}
|
||
|
||
// 出队
|
||
pub fn pop(self: *Self) T {
|
||
var num = self.peek();
|
||
// 删除头节点
|
||
self.front = self.front.?.next;
|
||
self.que_size -= 1;
|
||
return num;
|
||
}
|
||
|
||
// 将链表转换为数组
|
||
pub fn toArray(self: *Self) ![]T {
|
||
var node = self.front;
|
||
var res = try self.mem_allocator.alloc(T, self.size());
|
||
std.mem.set(T, res, @as(T, 0));
|
||
var i: usize = 0;
|
||
while (i < res.len) : (i += 1) {
|
||
res[i] = node.?.val;
|
||
node = node.?.next;
|
||
}
|
||
return res;
|
||
}
|
||
};
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="linkedlist_queue.dart"
|
||
/* 基于链表实现的队列 */
|
||
class LinkedListQueue {
|
||
ListNode? _front; // 头节点 _front
|
||
ListNode? _rear; // 尾节点 _rear
|
||
int _queSize = 0; // 队列长度
|
||
|
||
LinkedListQueue() {
|
||
_front = null;
|
||
_rear = null;
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
int size() {
|
||
return _queSize;
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
bool isEmpty() {
|
||
return _queSize == 0;
|
||
}
|
||
|
||
/* 入队 */
|
||
void push(int num) {
|
||
// 尾节点后添加 num
|
||
final node = ListNode(num);
|
||
// 如果队列为空,则令头、尾节点都指向该节点
|
||
if (_front == null) {
|
||
_front = node;
|
||
_rear = node;
|
||
} else {
|
||
// 如果队列不为空,则将该节点添加到尾节点后
|
||
_rear!.next = node;
|
||
_rear = node;
|
||
}
|
||
_queSize++;
|
||
}
|
||
|
||
/* 出队 */
|
||
int pop() {
|
||
final int num = peek();
|
||
// 删除头节点
|
||
_front = _front!.next;
|
||
_queSize--;
|
||
return num;
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
int peek() {
|
||
if (_queSize == 0) {
|
||
throw Exception('队列为空');
|
||
}
|
||
return _front!.val;
|
||
}
|
||
|
||
/* 将链表转化为 Array 并返回 */
|
||
List<int> toArray() {
|
||
ListNode? node = _front;
|
||
final List<int> queue = [];
|
||
while (node != null) {
|
||
queue.add(node.val);
|
||
node = node.next;
|
||
}
|
||
return queue;
|
||
}
|
||
}
|
||
```
|
||
|
||
### 基于数组的实现
|
||
|
||
由于数组删除首元素的时间复杂度为 $O(n)$ ,这会导致出队操作效率较低。然而,我们可以采用以下巧妙方法来避免这个问题。
|
||
|
||
我们可以使用一个变量 `front` 指向队首元素的索引,并维护一个变量 `queSize` 用于记录队列长度。定义 `rear = front + queSize` ,这个公式计算出的 `rear` 指向队尾元素之后的下一个位置。
|
||
|
||
基于此设计,**数组中包含元素的有效区间为 [front, rear - 1]**,进而:
|
||
|
||
- 对于入队操作,将输入元素赋值给 `rear` 索引处,并将 `queSize` 增加 1 ;
|
||
- 对于出队操作,只需将 `front` 增加 1 ,并将 `queSize` 减少 1 ;
|
||
|
||
可以看到,入队和出队操作都只需进行一次操作,时间复杂度均为 $O(1)$ 。
|
||
|
||
=== "ArrayQueue"
|
||
![基于数组实现队列的入队出队操作](queue.assets/array_queue.png)
|
||
|
||
=== "push()"
|
||
![array_queue_push](queue.assets/array_queue_push.png)
|
||
|
||
=== "pop()"
|
||
![array_queue_pop](queue.assets/array_queue_pop.png)
|
||
|
||
你可能会发现一个问题:在不断进行入队和出队的过程中,`front` 和 `rear` 都在向右移动,**当它们到达数组尾部时就无法继续移动了**。为解决此问题,我们可以将数组视为首尾相接的「环形数组」。
|
||
|
||
对于环形数组,我们需要让 `front` 或 `rear` 在越过数组尾部时,直接回到数组头部继续遍历。这种周期性规律可以通过“取余操作”来实现,代码如下所示。
|
||
|
||
=== "Java"
|
||
|
||
```java title="array_queue.java"
|
||
/* 基于环形数组实现的队列 */
|
||
class ArrayQueue {
|
||
private int[] nums; // 用于存储队列元素的数组
|
||
private int front; // 队首指针,指向队首元素
|
||
private int queSize; // 队列长度
|
||
|
||
public ArrayQueue(int capacity) {
|
||
nums = new int[capacity];
|
||
front = queSize = 0;
|
||
}
|
||
|
||
/* 获取队列的容量 */
|
||
public int capacity() {
|
||
return nums.length;
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
public int size() {
|
||
return queSize;
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
public boolean isEmpty() {
|
||
return queSize == 0;
|
||
}
|
||
|
||
/* 入队 */
|
||
public void push(int num) {
|
||
if (queSize == capacity()) {
|
||
System.out.println("队列已满");
|
||
return;
|
||
}
|
||
// 计算尾指针,指向队尾索引 + 1
|
||
// 通过取余操作,实现 rear 越过数组尾部后回到头部
|
||
int rear = (front + queSize) % capacity();
|
||
// 将 num 添加至队尾
|
||
nums[rear] = num;
|
||
queSize++;
|
||
}
|
||
|
||
/* 出队 */
|
||
public int pop() {
|
||
int num = peek();
|
||
// 队首指针向后移动一位,若越过尾部则返回到数组头部
|
||
front = (front + 1) % capacity();
|
||
queSize--;
|
||
return num;
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
public int peek() {
|
||
if (isEmpty())
|
||
throw new IndexOutOfBoundsException();
|
||
return nums[front];
|
||
}
|
||
|
||
/* 返回数组 */
|
||
public int[] toArray() {
|
||
// 仅转换有效长度范围内的列表元素
|
||
int[] res = new int[queSize];
|
||
for (int i = 0, j = front; i < queSize; i++, j++) {
|
||
res[i] = nums[j % capacity()];
|
||
}
|
||
return res;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="array_queue.cpp"
|
||
/* 基于环形数组实现的队列 */
|
||
class ArrayQueue {
|
||
private:
|
||
int *nums; // 用于存储队列元素的数组
|
||
int front; // 队首指针,指向队首元素
|
||
int queSize; // 队列长度
|
||
int queCapacity; // 队列容量
|
||
|
||
public:
|
||
ArrayQueue(int capacity) {
|
||
// 初始化数组
|
||
nums = new int[capacity];
|
||
queCapacity = capacity;
|
||
front = queSize = 0;
|
||
}
|
||
|
||
~ArrayQueue() {
|
||
delete[] nums;
|
||
}
|
||
|
||
/* 获取队列的容量 */
|
||
int capacity() {
|
||
return queCapacity;
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
int size() {
|
||
return queSize;
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
bool empty() {
|
||
return size() == 0;
|
||
}
|
||
|
||
/* 入队 */
|
||
void push(int num) {
|
||
if (queSize == queCapacity) {
|
||
cout << "队列已满" << endl;
|
||
return;
|
||
}
|
||
// 计算队尾指针,指向队尾索引 + 1
|
||
// 通过取余操作,实现 rear 越过数组尾部后回到头部
|
||
int rear = (front + queSize) % queCapacity;
|
||
// 将 num 添加至队尾
|
||
nums[rear] = num;
|
||
queSize++;
|
||
}
|
||
|
||
/* 出队 */
|
||
void pop() {
|
||
int num = peek();
|
||
// 队首指针向后移动一位,若越过尾部则返回到数组头部
|
||
front = (front + 1) % queCapacity;
|
||
queSize--;
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
int peek() {
|
||
if (empty())
|
||
throw out_of_range("队列为空");
|
||
return nums[front];
|
||
}
|
||
|
||
/* 将数组转化为 Vector 并返回 */
|
||
vector<int> toVector() {
|
||
// 仅转换有效长度范围内的列表元素
|
||
vector<int> arr(queSize);
|
||
for (int i = 0, j = front; i < queSize; i++, j++) {
|
||
arr[i] = nums[j % queCapacity];
|
||
}
|
||
return arr;
|
||
}
|
||
};
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="array_queue.py"
|
||
class ArrayQueue:
|
||
"""基于环形数组实现的队列"""
|
||
|
||
def __init__(self, size: int) -> None:
|
||
"""构造方法"""
|
||
self.__nums: list[int] = [0] * size # 用于存储队列元素的数组
|
||
self.__front: int = 0 # 队首指针,指向队首元素
|
||
self.__size: int = 0 # 队列长度
|
||
|
||
def capacity(self) -> int:
|
||
"""获取队列的容量"""
|
||
return len(self.__nums)
|
||
|
||
def size(self) -> int:
|
||
"""获取队列的长度"""
|
||
return self.__size
|
||
|
||
def is_empty(self) -> bool:
|
||
"""判断队列是否为空"""
|
||
return self.__size == 0
|
||
|
||
def push(self, num: int) -> None:
|
||
"""入队"""
|
||
if self.__size == self.capacity():
|
||
raise IndexError("队列已满")
|
||
# 计算尾指针,指向队尾索引 + 1
|
||
# 通过取余操作,实现 rear 越过数组尾部后回到头部F
|
||
rear: int = (self.__front + self.__size) % self.capacity()
|
||
# 将 num 添加至队尾
|
||
self.__nums[rear] = num
|
||
self.__size += 1
|
||
|
||
def pop(self) -> int:
|
||
"""出队"""
|
||
num: int = self.peek()
|
||
# 队首指针向后移动一位,若越过尾部则返回到数组头部
|
||
self.__front = (self.__front + 1) % self.capacity()
|
||
self.__size -= 1
|
||
return num
|
||
|
||
def peek(self) -> int:
|
||
"""访问队首元素"""
|
||
if self.is_empty():
|
||
raise IndexError("队列为空")
|
||
return self.__nums[self.__front]
|
||
|
||
def to_list(self) -> list[int]:
|
||
"""返回列表用于打印"""
|
||
res = [0] * self.size()
|
||
j: int = self.__front
|
||
for i in range(self.size()):
|
||
res[i] = self.__nums[(j % self.capacity())]
|
||
j += 1
|
||
return res
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="array_queue.go"
|
||
/* 基于环形数组实现的队列 */
|
||
type arrayQueue struct {
|
||
nums []int // 用于存储队列元素的数组
|
||
front int // 队首指针,指向队首元素
|
||
queSize int // 队列长度
|
||
queCapacity int // 队列容量(即最大容纳元素数量)
|
||
}
|
||
|
||
/* 初始化队列 */
|
||
func newArrayQueue(queCapacity int) *arrayQueue {
|
||
return &arrayQueue{
|
||
nums: make([]int, queCapacity),
|
||
queCapacity: queCapacity,
|
||
front: 0,
|
||
queSize: 0,
|
||
}
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
func (q *arrayQueue) size() int {
|
||
return q.queSize
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
func (q *arrayQueue) isEmpty() bool {
|
||
return q.queSize == 0
|
||
}
|
||
|
||
/* 入队 */
|
||
func (q *arrayQueue) push(num int) {
|
||
// 当 rear == queCapacity 表示队列已满
|
||
if q.queSize == q.queCapacity {
|
||
return
|
||
}
|
||
// 计算尾指针,指向队尾索引 + 1
|
||
// 通过取余操作,实现 rear 越过数组尾部后回到头部
|
||
rear := (q.front + q.queSize) % q.queCapacity
|
||
// 将 num 添加至队尾
|
||
q.nums[rear] = num
|
||
q.queSize++
|
||
}
|
||
|
||
/* 出队 */
|
||
func (q *arrayQueue) pop() any {
|
||
num := q.peek()
|
||
// 队首指针向后移动一位,若越过尾部则返回到数组头部
|
||
q.front = (q.front + 1) % q.queCapacity
|
||
q.queSize--
|
||
return num
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
func (q *arrayQueue) peek() any {
|
||
if q.isEmpty() {
|
||
return nil
|
||
}
|
||
return q.nums[q.front]
|
||
}
|
||
|
||
/* 获取 Slice 用于打印 */
|
||
func (q *arrayQueue) toSlice() []int {
|
||
rear := (q.front + q.queSize)
|
||
if rear >= q.queCapacity {
|
||
rear %= q.queCapacity
|
||
return append(q.nums[q.front:], q.nums[:rear]...)
|
||
}
|
||
return q.nums[q.front:rear]
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="array_queue.js"
|
||
/* 基于环形数组实现的队列 */
|
||
class ArrayQueue {
|
||
#nums; // 用于存储队列元素的数组
|
||
#front = 0; // 队首指针,指向队首元素
|
||
#queSize = 0; // 队列长度
|
||
|
||
constructor(capacity) {
|
||
this.#nums = new Array(capacity);
|
||
}
|
||
|
||
/* 获取队列的容量 */
|
||
get capacity() {
|
||
return this.#nums.length;
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
get size() {
|
||
return this.#queSize;
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
empty() {
|
||
return this.#queSize == 0;
|
||
}
|
||
|
||
/* 入队 */
|
||
push(num) {
|
||
if (this.size == this.capacity) {
|
||
console.log('队列已满');
|
||
return;
|
||
}
|
||
// 计算尾指针,指向队尾索引 + 1
|
||
// 通过取余操作,实现 rear 越过数组尾部后回到头部
|
||
const rear = (this.#front + this.size) % this.capacity;
|
||
// 将 num 添加至队尾
|
||
this.#nums[rear] = num;
|
||
this.#queSize++;
|
||
}
|
||
|
||
/* 出队 */
|
||
pop() {
|
||
const num = this.peek();
|
||
// 队首指针向后移动一位,若越过尾部则返回到数组头部
|
||
this.#front = (this.#front + 1) % this.capacity;
|
||
this.#queSize--;
|
||
return num;
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
peek() {
|
||
if (this.empty()) throw new Error('队列为空');
|
||
return this.#nums[this.#front];
|
||
}
|
||
|
||
/* 返回 Array */
|
||
toArray() {
|
||
// 仅转换有效长度范围内的列表元素
|
||
const arr = new Array(this.size);
|
||
for (let i = 0, j = this.#front; i < this.size; i++, j++) {
|
||
arr[i] = this.#nums[j % this.capacity];
|
||
}
|
||
return arr;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="array_queue.ts"
|
||
/* 基于环形数组实现的队列 */
|
||
class ArrayQueue {
|
||
private nums: number[]; // 用于存储队列元素的数组
|
||
private front: number; // 队首指针,指向队首元素
|
||
private queSize: number; // 队列长度
|
||
|
||
constructor(capacity: number) {
|
||
this.nums = new Array(capacity);
|
||
this.front = this.queSize = 0;
|
||
}
|
||
|
||
/* 获取队列的容量 */
|
||
get capacity(): number {
|
||
return this.nums.length;
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
get size(): number {
|
||
return this.queSize;
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
empty(): boolean {
|
||
return this.queSize == 0;
|
||
}
|
||
|
||
/* 入队 */
|
||
push(num: number): void {
|
||
if (this.size == this.capacity) {
|
||
console.log('队列已满');
|
||
return;
|
||
}
|
||
// 计算尾指针,指向队尾索引 + 1
|
||
// 通过取余操作,实现 rear 越过数组尾部后回到头部
|
||
const rear = (this.front + this.queSize) % this.capacity;
|
||
// 将 num 添加至队尾
|
||
this.nums[rear] = num;
|
||
this.queSize++;
|
||
}
|
||
|
||
/* 出队 */
|
||
pop(): number {
|
||
const num = this.peek();
|
||
// 队首指针向后移动一位,若越过尾部则返回到数组头部
|
||
this.front = (this.front + 1) % this.capacity;
|
||
this.queSize--;
|
||
return num;
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
peek(): number {
|
||
if (this.empty()) throw new Error('队列为空');
|
||
return this.nums[this.front];
|
||
}
|
||
|
||
/* 返回 Array */
|
||
toArray(): number[] {
|
||
// 仅转换有效长度范围内的列表元素
|
||
const arr = new Array(this.size);
|
||
for (let i = 0, j = this.front; i < this.size; i++, j++) {
|
||
arr[i] = this.nums[j % this.capacity];
|
||
}
|
||
return arr;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="array_queue.c"
|
||
/* 基于环形数组实现的队列 */
|
||
struct arrayQueue {
|
||
int *nums; // 用于存储队列元素的数组
|
||
int front; // 队首指针,指向队首元素
|
||
int queSize; // 尾指针,指向队尾 + 1
|
||
int queCapacity; // 队列容量
|
||
};
|
||
|
||
typedef struct arrayQueue arrayQueue;
|
||
|
||
/* 构造函数 */
|
||
arrayQueue *newArrayQueue(int capacity) {
|
||
arrayQueue *queue = (arrayQueue *)malloc(sizeof(arrayQueue));
|
||
// 初始化数组
|
||
queue->queCapacity = capacity;
|
||
queue->nums = (int *)malloc(sizeof(int) * queue->queCapacity);
|
||
queue->front = queue->queSize = 0;
|
||
return queue;
|
||
}
|
||
|
||
/* 析构函数 */
|
||
void delArrayQueue(arrayQueue *queue) {
|
||
free(queue->nums);
|
||
queue->queCapacity = 0;
|
||
}
|
||
|
||
/* 获取队列的容量 */
|
||
int capacity(arrayQueue *queue) {
|
||
return queue->queCapacity;
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
int size(arrayQueue *queue) {
|
||
return queue->queSize;
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
bool empty(arrayQueue *queue) {
|
||
return queue->queSize == 0;
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
int peek(arrayQueue *queue) {
|
||
assert(size(queue) != 0);
|
||
return queue->nums[queue->front];
|
||
}
|
||
|
||
/* 入队 */
|
||
void push(arrayQueue *queue, int num) {
|
||
if (size(queue) == capacity(queue)) {
|
||
printf("队列已满\r\n");
|
||
return;
|
||
}
|
||
// 计算队尾指针,指向队尾索引 + 1
|
||
// 通过取余操作,实现 rear 越过数组尾部后回到头部
|
||
int rear = (queue->front + queue->queSize) % queue->queCapacity;
|
||
// 将 num 添加至队尾
|
||
queue->nums[rear] = num;
|
||
queue->queSize++;
|
||
}
|
||
|
||
/* 出队 */
|
||
void pop(arrayQueue *queue) {
|
||
int num = peek(queue);
|
||
// 队首指针向后移动一位,若越过尾部则返回到数组头部
|
||
queue->front = (queue->front + 1) % queue->queCapacity;
|
||
queue->queSize--;
|
||
}
|
||
|
||
/* 打印队列 */
|
||
void printArrayQueue(arrayQueue *queue) {
|
||
int arr[queue->queSize];
|
||
// 拷贝
|
||
for (int i = 0, j = queue->front; i < queue->queSize; i++, j++) {
|
||
arr[i] = queue->nums[j % queue->queCapacity];
|
||
}
|
||
printArray(arr, queue->queSize);
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="array_queue.cs"
|
||
/* 基于环形数组实现的队列 */
|
||
class ArrayQueue {
|
||
private int[] nums; // 用于存储队列元素的数组
|
||
private int front; // 队首指针,指向队首元素
|
||
private int queSize; // 队列长度
|
||
|
||
public ArrayQueue(int capacity) {
|
||
nums = new int[capacity];
|
||
front = queSize = 0;
|
||
}
|
||
|
||
/* 获取队列的容量 */
|
||
public int capacity() {
|
||
return nums.Length;
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
public int size() {
|
||
return queSize;
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
public bool isEmpty() {
|
||
return queSize == 0;
|
||
}
|
||
|
||
/* 入队 */
|
||
public void push(int num) {
|
||
if (queSize == capacity()) {
|
||
Console.WriteLine("队列已满");
|
||
return;
|
||
}
|
||
// 计算尾指针,指向队尾索引 + 1
|
||
// 通过取余操作,实现 rear 越过数组尾部后回到头部
|
||
int rear = (front + queSize) % capacity();
|
||
// 将 num 添加至队尾
|
||
nums[rear] = num;
|
||
queSize++;
|
||
}
|
||
|
||
/* 出队 */
|
||
public int pop() {
|
||
int num = peek();
|
||
// 队首指针向后移动一位,若越过尾部则返回到数组头部
|
||
front = (front + 1) % capacity();
|
||
queSize--;
|
||
return num;
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
public int peek() {
|
||
if (isEmpty())
|
||
throw new Exception();
|
||
return nums[front];
|
||
}
|
||
|
||
/* 返回数组 */
|
||
public int[] toArray() {
|
||
// 仅转换有效长度范围内的列表元素
|
||
int[] res = new int[queSize];
|
||
for (int i = 0, j = front; i < queSize; i++, j++) {
|
||
res[i] = nums[j % this.capacity()];
|
||
}
|
||
return res;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="array_queue.swift"
|
||
/* 基于环形数组实现的队列 */
|
||
class ArrayQueue {
|
||
private var nums: [Int] // 用于存储队列元素的数组
|
||
private var front = 0 // 队首指针,指向队首元素
|
||
private var queSize = 0 // 队列长度
|
||
|
||
init(capacity: Int) {
|
||
// 初始化数组
|
||
nums = Array(repeating: 0, count: capacity)
|
||
}
|
||
|
||
/* 获取队列的容量 */
|
||
func capacity() -> Int {
|
||
nums.count
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
func size() -> Int {
|
||
queSize
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
func isEmpty() -> Bool {
|
||
queSize == 0
|
||
}
|
||
|
||
/* 入队 */
|
||
func push(num: Int) {
|
||
if size() == capacity() {
|
||
print("队列已满")
|
||
return
|
||
}
|
||
// 计算尾指针,指向队尾索引 + 1
|
||
// 通过取余操作,实现 rear 越过数组尾部后回到头部
|
||
let rear = (front + queSize) % capacity()
|
||
// 将 num 添加至队尾
|
||
nums[rear] = num
|
||
queSize += 1
|
||
}
|
||
|
||
/* 出队 */
|
||
@discardableResult
|
||
func pop() -> Int {
|
||
let num = peek()
|
||
// 队首指针向后移动一位,若越过尾部则返回到数组头部
|
||
front = (front + 1) % capacity()
|
||
queSize -= 1
|
||
return num
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
func peek() -> Int {
|
||
if isEmpty() {
|
||
fatalError("队列为空")
|
||
}
|
||
return nums[front]
|
||
}
|
||
|
||
/* 返回数组 */
|
||
func toArray() -> [Int] {
|
||
// 仅转换有效长度范围内的列表元素
|
||
var res = Array(repeating: 0, count: queSize)
|
||
for (i, j) in sequence(first: (0, front), next: { $0 < self.queSize - 1 ? ($0 + 1, $1 + 1) : nil }) {
|
||
res[i] = nums[j % capacity()]
|
||
}
|
||
return res
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="array_queue.zig"
|
||
// 基于环形数组实现的队列
|
||
fn ArrayQueue(comptime T: type) type {
|
||
return struct {
|
||
const Self = @This();
|
||
|
||
nums: []T = undefined, // 用于存储队列元素的数组
|
||
cap: usize = 0, // 队列容量
|
||
front: usize = 0, // 队首指针,指向队首元素
|
||
que_size: usize = 0, // 尾指针,指向队尾 + 1
|
||
mem_arena: ?std.heap.ArenaAllocator = null,
|
||
mem_allocator: std.mem.Allocator = undefined, // 内存分配器
|
||
|
||
// 构造方法(分配内存+初始化数组)
|
||
pub fn init(self: *Self, allocator: std.mem.Allocator, cap: usize) !void {
|
||
if (self.mem_arena == null) {
|
||
self.mem_arena = std.heap.ArenaAllocator.init(allocator);
|
||
self.mem_allocator = self.mem_arena.?.allocator();
|
||
}
|
||
self.cap = cap;
|
||
self.nums = try self.mem_allocator.alloc(T, self.cap);
|
||
std.mem.set(T, self.nums, @as(T, 0));
|
||
}
|
||
|
||
// 析构方法(释放内存)
|
||
pub fn deinit(self: *Self) void {
|
||
if (self.mem_arena == null) return;
|
||
self.mem_arena.?.deinit();
|
||
}
|
||
|
||
// 获取队列的容量
|
||
pub fn capacity(self: *Self) usize {
|
||
return self.cap;
|
||
}
|
||
|
||
// 获取队列的长度
|
||
pub fn size(self: *Self) usize {
|
||
return self.que_size;
|
||
}
|
||
|
||
// 判断队列是否为空
|
||
pub fn isEmpty(self: *Self) bool {
|
||
return self.que_size == 0;
|
||
}
|
||
|
||
// 入队
|
||
pub fn push(self: *Self, num: T) !void {
|
||
if (self.size() == self.capacity()) {
|
||
std.debug.print("队列已满\n", .{});
|
||
return;
|
||
}
|
||
// 计算尾指针,指向队尾索引 + 1
|
||
// 通过取余操作,实现 rear 越过数组尾部后回到头部
|
||
var rear = (self.front + self.que_size) % self.capacity();
|
||
// 将 num 添加至队尾
|
||
self.nums[rear] = num;
|
||
self.que_size += 1;
|
||
}
|
||
|
||
// 出队
|
||
pub fn pop(self: *Self) T {
|
||
var num = self.peek();
|
||
// 队首指针向后移动一位,若越过尾部则返回到数组头部
|
||
self.front = (self.front + 1) % self.capacity();
|
||
self.que_size -= 1;
|
||
return num;
|
||
}
|
||
|
||
// 访问队首元素
|
||
pub fn peek(self: *Self) T {
|
||
if (self.isEmpty()) @panic("队列为空");
|
||
return self.nums[self.front];
|
||
}
|
||
|
||
// 返回数组
|
||
pub fn toArray(self: *Self) ![]T {
|
||
// 仅转换有效长度范围内的列表元素
|
||
var res = try self.mem_allocator.alloc(T, self.size());
|
||
std.mem.set(T, res, @as(T, 0));
|
||
var i: usize = 0;
|
||
var j: usize = self.front;
|
||
while (i < self.size()) : ({ i += 1; j += 1; }) {
|
||
res[i] = self.nums[j % self.capacity()];
|
||
}
|
||
return res;
|
||
}
|
||
};
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="array_queue.dart"
|
||
/* 基于环形数组实现的队列 */
|
||
class ArrayQueue {
|
||
late List<int> _nums; // 用于储存队列元素的数组
|
||
late int _front; // 队首指针,指向队首元素
|
||
late int _queSize; // 队列长度
|
||
|
||
ArrayQueue(int capacity) {
|
||
_nums = List.filled(capacity, 0);
|
||
_front = _queSize = 0;
|
||
}
|
||
|
||
/* 获取队列的容量 */
|
||
int capaCity() {
|
||
return _nums.length;
|
||
}
|
||
|
||
/* 获取队列的长度 */
|
||
int size() {
|
||
return _queSize;
|
||
}
|
||
|
||
/* 判断队列是否为空 */
|
||
bool isEmpty() {
|
||
return _queSize == 0;
|
||
}
|
||
|
||
/* 入队 */
|
||
void push(int num) {
|
||
if (_queSize == capaCity()) {
|
||
throw Exception("队列已满");
|
||
}
|
||
// 计算尾指针,指向队尾索引 + 1
|
||
// 通过取余操作,实现 rear 越过数组尾部后回到头部
|
||
int rear = (_front + _queSize) % capaCity();
|
||
// 将 num 添加至队尾
|
||
_nums[rear] = num;
|
||
_queSize++;
|
||
}
|
||
|
||
/* 出队 */
|
||
int pop() {
|
||
int num = peek();
|
||
// 队首指针向后移动一位,若越过尾部则返回到数组头部
|
||
_front = (_front + 1) % capaCity();
|
||
_queSize--;
|
||
return num;
|
||
}
|
||
|
||
/* 访问队首元素 */
|
||
int peek() {
|
||
if (isEmpty()) {
|
||
throw Exception("队列为空");
|
||
}
|
||
return _nums[_front];
|
||
}
|
||
|
||
/* 返回 Array */
|
||
List<int> toArray() {
|
||
// 仅转换有效长度范围内的列表元素
|
||
final List<int> res = List.filled(_queSize, 0);
|
||
for (int i = 0, j = _front; i < _queSize; i++, j++) {
|
||
res[i] = _nums[j % capaCity()];
|
||
}
|
||
return res;
|
||
}
|
||
}
|
||
```
|
||
|
||
以上实现的队列仍然具有局限性,即其长度不可变。然而,这个问题不难解决,我们可以将数组替换为动态数组,从而引入扩容机制。有兴趣的同学可以尝试自行实现。
|
||
|
||
两种实现的对比结论与栈一致,在此不再赘述。
|
||
|
||
## 5.2.3. 队列典型应用
|
||
|
||
- **淘宝订单**。购物者下单后,订单将加入队列中,系统随后会根据顺序依次处理队列中的订单。在双十一期间,短时间内会产生海量订单,高并发成为工程师们需要重点攻克的问题。
|
||
- **各类待办事项**。任何需要实现“先来后到”功能的场景,例如打印机的任务队列、餐厅的出餐队列等。队列在这些场景中可以有效地维护处理顺序。
|