mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-28 05:16:28 +08:00
3073 lines
79 KiB
Markdown
Executable file
3073 lines
79 KiB
Markdown
Executable file
---
|
||
comments: true
|
||
---
|
||
|
||
# 2.2. 时间复杂度
|
||
|
||
## 2.2.1. 统计算法运行时间
|
||
|
||
运行时间可以直观且准确地反映算法的效率。然而,如果我们想要准确预估一段代码的运行时间,应该如何操作呢?
|
||
|
||
1. **确定运行平台**,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。
|
||
2. **评估各种计算操作所需的运行时间**,例如加法操作 `+` 需要 1 ns,乘法操作 `*` 需要 10 ns,打印操作需要 5 ns 等。
|
||
3. **统计代码中所有的计算操作**,并将所有操作的执行时间求和,从而得到运行时间。
|
||
|
||
例如以下代码,输入数据大小为 $n$ ,根据以上方法,可以得到算法运行时间为 $6n + 12$ ns 。
|
||
|
||
$$
|
||
1 + 1 + 10 + (1 + 5) \times n = 6n + 12
|
||
$$
|
||
|
||
=== "Java"
|
||
|
||
```java title=""
|
||
// 在某运行平台下
|
||
void algorithm(int n) {
|
||
int a = 2; // 1 ns
|
||
a = a + 1; // 1 ns
|
||
a = a * 2; // 10 ns
|
||
// 循环 n 次
|
||
for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++
|
||
System.out.println(0); // 5 ns
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title=""
|
||
// 在某运行平台下
|
||
void algorithm(int n) {
|
||
int a = 2; // 1 ns
|
||
a = a + 1; // 1 ns
|
||
a = a * 2; // 10 ns
|
||
// 循环 n 次
|
||
for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++
|
||
cout << 0 << endl; // 5 ns
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title=""
|
||
# 在某运行平台下
|
||
def algorithm(n: int) -> None:
|
||
a = 2 # 1 ns
|
||
a = a + 1 # 1 ns
|
||
a = a * 2 # 10 ns
|
||
# 循环 n 次
|
||
for _ in range(n): # 1 ns
|
||
print(0) # 5 ns
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title=""
|
||
// 在某运行平台下
|
||
func algorithm(n int) {
|
||
a := 2 // 1 ns
|
||
a = a + 1 // 1 ns
|
||
a = a * 2 // 10 ns
|
||
// 循环 n 次
|
||
for i := 0; i < n; i++ { // 1 ns
|
||
fmt.Println(a) // 5 ns
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title=""
|
||
// 在某运行平台下
|
||
function algorithm(n) {
|
||
var a = 2; // 1 ns
|
||
a = a + 1; // 1 ns
|
||
a = a * 2; // 10 ns
|
||
// 循环 n 次
|
||
for(let i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++
|
||
console.log(0); // 5 ns
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title=""
|
||
// 在某运行平台下
|
||
function algorithm(n: number): void {
|
||
var a: number = 2; // 1 ns
|
||
a = a + 1; // 1 ns
|
||
a = a * 2; // 10 ns
|
||
// 循环 n 次
|
||
for(let i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++
|
||
console.log(0); // 5 ns
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title=""
|
||
// 在某运行平台下
|
||
void algorithm(int n) {
|
||
int a = 2; // 1 ns
|
||
a = a + 1; // 1 ns
|
||
a = a * 2; // 10 ns
|
||
// 循环 n 次
|
||
for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++
|
||
printf("%d", 0); // 5 ns
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title=""
|
||
// 在某运行平台下
|
||
void algorithm(int n)
|
||
{
|
||
int a = 2; // 1 ns
|
||
a = a + 1; // 1 ns
|
||
a = a * 2; // 10 ns
|
||
// 循环 n 次
|
||
for (int i = 0; i < n; i++)
|
||
{ // 1 ns ,每轮都要执行 i++
|
||
Console.WriteLine(0); // 5 ns
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title=""
|
||
// 在某运行平台下
|
||
func algorithm(n: Int) {
|
||
var a = 2 // 1 ns
|
||
a = a + 1 // 1 ns
|
||
a = a * 2 // 10 ns
|
||
// 循环 n 次
|
||
for _ in 0 ..< n { // 1 ns
|
||
print(0) // 5 ns
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title=""
|
||
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title=""
|
||
// 在某运行平台下
|
||
void algorithm(int n) {
|
||
int a = 2; // 1 ns
|
||
a = a + 1; // 1 ns
|
||
a = a * 2; // 10 ns
|
||
// 循环 n 次
|
||
for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++
|
||
print(0); // 5 ns
|
||
}
|
||
}
|
||
```
|
||
|
||
然而实际上,**统计算法的运行时间既不合理也不现实**。首先,我们不希望预估时间和运行平台绑定,因为算法需要在各种不同的平台上运行。其次,我们很难获知每种操作的运行时间,这给预估过程带来了极大的难度。
|
||
|
||
## 2.2.2. 统计时间增长趋势
|
||
|
||
「时间复杂度分析」采取了一种不同的方法,其统计的不是算法运行时间,**而是算法运行时间随着数据量变大时的增长趋势**。
|
||
|
||
“时间增长趋势”这个概念较为抽象,我们通过一个例子来加以理解。假设输入数据大小为 $n$ ,给定三个算法 `A` , `B` , `C` 。
|
||
|
||
- 算法 `A` 只有 $1$ 个打印操作,算法运行时间不随着 $n$ 增大而增长。我们称此算法的时间复杂度为「常数阶」。
|
||
- 算法 `B` 中的打印操作需要循环 $n$ 次,算法运行时间随着 $n$ 增大呈线性增长。此算法的时间复杂度被称为「线性阶」。
|
||
- 算法 `C` 中的打印操作需要循环 $1000000$ 次,但运行时间仍与输入数据大小 $n$ 无关。因此 `C` 的时间复杂度和 `A` 相同,仍为「常数阶」。
|
||
|
||
=== "Java"
|
||
|
||
```java title=""
|
||
// 算法 A 时间复杂度:常数阶
|
||
void algorithm_A(int n) {
|
||
System.out.println(0);
|
||
}
|
||
// 算法 B 时间复杂度:线性阶
|
||
void algorithm_B(int n) {
|
||
for (int i = 0; i < n; i++) {
|
||
System.out.println(0);
|
||
}
|
||
}
|
||
// 算法 C 时间复杂度:常数阶
|
||
void algorithm_C(int n) {
|
||
for (int i = 0; i < 1000000; i++) {
|
||
System.out.println(0);
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title=""
|
||
// 算法 A 时间复杂度:常数阶
|
||
void algorithm_A(int n) {
|
||
cout << 0 << endl;
|
||
}
|
||
// 算法 B 时间复杂度:线性阶
|
||
void algorithm_B(int n) {
|
||
for (int i = 0; i < n; i++) {
|
||
cout << 0 << endl;
|
||
}
|
||
}
|
||
// 算法 C 时间复杂度:常数阶
|
||
void algorithm_C(int n) {
|
||
for (int i = 0; i < 1000000; i++) {
|
||
cout << 0 << endl;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title=""
|
||
# 算法 A 时间复杂度:常数阶
|
||
def algorithm_A(n: int) -> None:
|
||
print(0)
|
||
# 算法 B 时间复杂度:线性阶
|
||
def algorithm_B(n: int) -> None:
|
||
for _ in range(n):
|
||
print(0)
|
||
# 算法 C 时间复杂度:常数阶
|
||
def algorithm_C(n: int) -> None:
|
||
for _ in range(1000000):
|
||
print(0)
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title=""
|
||
// 算法 A 时间复杂度:常数阶
|
||
func algorithm_A(n int) {
|
||
fmt.Println(0)
|
||
}
|
||
// 算法 B 时间复杂度:线性阶
|
||
func algorithm_B(n int) {
|
||
for i := 0; i < n; i++ {
|
||
fmt.Println(0)
|
||
}
|
||
}
|
||
// 算法 C 时间复杂度:常数阶
|
||
func algorithm_C(n int) {
|
||
for i := 0; i < 1000000; i++ {
|
||
fmt.Println(0)
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title=""
|
||
// 算法 A 时间复杂度:常数阶
|
||
function algorithm_A(n) {
|
||
console.log(0);
|
||
}
|
||
// 算法 B 时间复杂度:线性阶
|
||
function algorithm_B(n) {
|
||
for (let i = 0; i < n; i++) {
|
||
console.log(0);
|
||
}
|
||
}
|
||
// 算法 C 时间复杂度:常数阶
|
||
function algorithm_C(n) {
|
||
for (let i = 0; i < 1000000; i++) {
|
||
console.log(0);
|
||
}
|
||
}
|
||
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title=""
|
||
// 算法 A 时间复杂度:常数阶
|
||
function algorithm_A(n: number): void {
|
||
console.log(0);
|
||
}
|
||
// 算法 B 时间复杂度:线性阶
|
||
function algorithm_B(n: number): void {
|
||
for (let i = 0; i < n; i++) {
|
||
console.log(0);
|
||
}
|
||
}
|
||
// 算法 C 时间复杂度:常数阶
|
||
function algorithm_C(n: number): void {
|
||
for (let i = 0; i < 1000000; i++) {
|
||
console.log(0);
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title=""
|
||
// 算法 A 时间复杂度:常数阶
|
||
void algorithm_A(int n) {
|
||
printf("%d", 0);
|
||
}
|
||
// 算法 B 时间复杂度:线性阶
|
||
void algorithm_B(int n) {
|
||
for (int i = 0; i < n; i++) {
|
||
printf("%d", 0);
|
||
}
|
||
}
|
||
// 算法 C 时间复杂度:常数阶
|
||
void algorithm_C(int n) {
|
||
for (int i = 0; i < 1000000; i++) {
|
||
printf("%d", 0);
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title=""
|
||
// 算法 A 时间复杂度:常数阶
|
||
void algorithm_A(int n)
|
||
{
|
||
Console.WriteLine(0);
|
||
}
|
||
// 算法 B 时间复杂度:线性阶
|
||
void algorithm_B(int n)
|
||
{
|
||
for (int i = 0; i < n; i++)
|
||
{
|
||
Console.WriteLine(0);
|
||
}
|
||
}
|
||
// 算法 C 时间复杂度:常数阶
|
||
void algorithm_C(int n)
|
||
{
|
||
for (int i = 0; i < 1000000; i++)
|
||
{
|
||
Console.WriteLine(0);
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title=""
|
||
// 算法 A 时间复杂度:常数阶
|
||
func algorithmA(n: Int) {
|
||
print(0)
|
||
}
|
||
|
||
// 算法 B 时间复杂度:线性阶
|
||
func algorithmB(n: Int) {
|
||
for _ in 0 ..< n {
|
||
print(0)
|
||
}
|
||
}
|
||
|
||
// 算法 C 时间复杂度:常数阶
|
||
func algorithmC(n: Int) {
|
||
for _ in 0 ..< 1000000 {
|
||
print(0)
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title=""
|
||
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title=""
|
||
// 算法 A 时间复杂度:常数阶
|
||
void algorithmA(int n) {
|
||
print(0);
|
||
}
|
||
// 算法 B 时间复杂度:线性阶
|
||
void algorithmB(int n) {
|
||
for (int i = 0; i < n; i++) {
|
||
print(0);
|
||
}
|
||
}
|
||
// 算法 C 时间复杂度:常数阶
|
||
void algorithmC(int n) {
|
||
for (int i = 0; i < 1000000; i++) {
|
||
print(0);
|
||
}
|
||
}
|
||
```
|
||
|
||
![算法 A, B, C 的时间增长趋势](time_complexity.assets/time_complexity_simple_example.png)
|
||
|
||
<p align="center"> Fig. 算法 A, B, C 的时间增长趋势 </p>
|
||
|
||
相较于直接统计算法运行时间,时间复杂度分析有哪些优势和局限性呢?
|
||
|
||
**时间复杂度能够有效评估算法效率**。例如,算法 `B` 的运行时间呈线性增长,在 $n > 1$ 时比算法 `A` 慢,在 $n > 1000000$ 时比算法 `C` 慢。事实上,只要输入数据大小 $n$ 足够大,复杂度为「常数阶」的算法一定优于「线性阶」的算法,这正是时间增长趋势所表达的含义。
|
||
|
||
**时间复杂度的推算方法更简便**。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作的运行时间的统计”简化为“计算操作的数量的统计”,这样的简化方法大大降低了估算难度。
|
||
|
||
**时间复杂度也存在一定的局限性**。例如,尽管算法 `A` 和 `C` 的时间复杂度相同,但实际运行时间差别很大。同样,尽管算法 `B` 的时间复杂度比 `C` 高,但在输入数据大小 $n$ 较小时,算法 `B` 明显优于算法 `C` 。在这些情况下,我们很难仅凭时间复杂度判断算法效率高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最有效且常用的方法。
|
||
|
||
## 2.2.3. 函数渐近上界
|
||
|
||
设算法的计算操作数量是一个关于输入数据大小 $n$ 的函数,记为 $T(n)$ ,则以下算法的操作数量为
|
||
|
||
$$
|
||
T(n) = 3 + 2n
|
||
$$
|
||
|
||
=== "Java"
|
||
|
||
```java title=""
|
||
void algorithm(int n) {
|
||
int a = 1; // +1
|
||
a = a + 1; // +1
|
||
a = a * 2; // +1
|
||
// 循环 n 次
|
||
for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
|
||
System.out.println(0); // +1
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title=""
|
||
void algorithm(int n) {
|
||
int a = 1; // +1
|
||
a = a + 1; // +1
|
||
a = a * 2; // +1
|
||
// 循环 n 次
|
||
for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
|
||
cout << 0 << endl; // +1
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title=""
|
||
def algorithm(n: int) -> None:
|
||
a = 1 # +1
|
||
a = a + 1 # +1
|
||
a = a * 2 # +1
|
||
# 循环 n 次
|
||
for i in range(n): # +1
|
||
print(0) # +1
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title=""
|
||
func algorithm(n int) {
|
||
a := 1 // +1
|
||
a = a + 1 // +1
|
||
a = a * 2 // +1
|
||
// 循环 n 次
|
||
for i := 0; i < n; i++ { // +1
|
||
fmt.Println(a) // +1
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title=""
|
||
function algorithm(n) {
|
||
var a = 1; // +1
|
||
a += 1; // +1
|
||
a *= 2; // +1
|
||
// 循环 n 次
|
||
for(let i = 0; i < n; i++){ // +1(每轮都执行 i ++)
|
||
console.log(0); // +1
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title=""
|
||
function algorithm(n: number): void{
|
||
var a: number = 1; // +1
|
||
a += 1; // +1
|
||
a *= 2; // +1
|
||
// 循环 n 次
|
||
for(let i = 0; i < n; i++){ // +1(每轮都执行 i ++)
|
||
console.log(0); // +1
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title=""
|
||
void algorithm(int n) {
|
||
int a = 1; // +1
|
||
a = a + 1; // +1
|
||
a = a * 2; // +1
|
||
// 循环 n 次
|
||
for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
|
||
printf("%d", 0); // +1
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title=""
|
||
void algorithm(int n)
|
||
{
|
||
int a = 1; // +1
|
||
a = a + 1; // +1
|
||
a = a * 2; // +1
|
||
// 循环 n 次
|
||
for (int i = 0; i < n; i++) // +1(每轮都执行 i ++)
|
||
{
|
||
Console.WriteLine(0); // +1
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title=""
|
||
func algorithm(n: Int) {
|
||
var a = 1 // +1
|
||
a = a + 1 // +1
|
||
a = a * 2 // +1
|
||
// 循环 n 次
|
||
for _ in 0 ..< n { // +1
|
||
print(0) // +1
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title=""
|
||
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title=""
|
||
void algorithm(int n) {
|
||
int a = 1; // +1
|
||
a = a + 1; // +1
|
||
a = a * 2; // +1
|
||
// 循环 n 次
|
||
for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
|
||
print(0); // +1
|
||
}
|
||
}
|
||
```
|
||
|
||
$T(n)$ 是一次函数,说明时间增长趋势是线性的,因此可以得出时间复杂度是线性阶。
|
||
|
||
我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号称为「大 $O$ 记号 Big-$O$ Notation」,表示函数 $T(n)$ 的「渐近上界 Asymptotic Upper Bound」。
|
||
|
||
推算时间复杂度本质上是计算“操作数量函数 $T(n)$”的渐近上界。接下来,我们来看函数渐近上界的数学定义。
|
||
|
||
!!! abstract "函数渐近上界"
|
||
|
||
若存在正实数 $c$ 和实数 $n_0$ ,使得对于所有的 $n > n_0$ ,均有
|
||
$$
|
||
T(n) \leq c \cdot f(n)
|
||
$$
|
||
则可认为 $f(n)$ 给出了 $T(n)$ 的一个渐近上界,记为
|
||
$$
|
||
T(n) = O(f(n))
|
||
$$
|
||
|
||
![函数的渐近上界](time_complexity.assets/asymptotic_upper_bound.png)
|
||
|
||
<p align="center"> Fig. 函数的渐近上界 </p>
|
||
|
||
从本质上讲,计算渐近上界就是寻找一个函数 $f(n)$ ,使得当 $n$ 趋向于无穷大时,$T(n)$ 和 $f(n)$ 处于相同的增长级别,仅相差一个常数项 $c$ 的倍数。
|
||
|
||
## 2.2.4. 推算方法
|
||
|
||
渐近上界的数学味儿有点重,如果你感觉没有完全理解,也无需担心。因为在实际使用中,我们只需要掌握推算方法,数学意义可以逐渐领悟。
|
||
|
||
根据定义,确定 $f(n)$ 之后,我们便可得到时间复杂度 $O(f(n))$ 。那么如何确定渐近上界 $f(n)$ 呢?总体分为两步:首先统计操作数量,然后判断渐近上界。
|
||
|
||
### 1) 统计操作数量
|
||
|
||
针对代码,逐行从上到下计算即可。然而,由于上述 $c \cdot f(n)$ 中的常数项 $c$ 可以取任意大小,**因此操作数量 $T(n)$ 中的各种系数、常数项都可以被忽略**。根据此原则,可以总结出以下计数简化技巧:
|
||
|
||
1. **忽略与 $n$ 无关的操作**。因为它们都是 $T(n)$ 中的常数项,对时间复杂度不产生影响。
|
||
2. **省略所有系数**。例如,循环 $2n$ 次、$5n + 1$ 次等,都可以简化记为 $n$ 次,因为 $n$ 前面的系数对时间复杂度没有影响。
|
||
3. **循环嵌套时使用乘法**。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用上述 `1.` 和 `2.` 技巧。
|
||
|
||
以下示例展示了使用上述技巧前、后的统计结果。
|
||
|
||
$$
|
||
\begin{aligned}
|
||
T(n) & = 2n(n + 1) + (5n + 1) + 2 & \text{完整统计 (-.-|||)} \newline
|
||
& = 2n^2 + 7n + 3 \newline
|
||
T(n) & = n^2 + n & \text{偷懒统计 (o.O)}
|
||
\end{aligned}
|
||
$$
|
||
|
||
最终,两者都能推出相同的时间复杂度结果,即 $O(n^2)$ 。
|
||
|
||
=== "Java"
|
||
|
||
```java title=""
|
||
void algorithm(int n) {
|
||
int a = 1; // +0(技巧 1)
|
||
a = a + n; // +0(技巧 1)
|
||
// +n(技巧 2)
|
||
for (int i = 0; i < 5 * n + 1; i++) {
|
||
System.out.println(0);
|
||
}
|
||
// +n*n(技巧 3)
|
||
for (int i = 0; i < 2 * n; i++) {
|
||
for (int j = 0; j < n + 1; j++) {
|
||
System.out.println(0);
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title=""
|
||
void algorithm(int n) {
|
||
int a = 1; // +0(技巧 1)
|
||
a = a + n; // +0(技巧 1)
|
||
// +n(技巧 2)
|
||
for (int i = 0; i < 5 * n + 1; i++) {
|
||
cout << 0 << endl;
|
||
}
|
||
// +n*n(技巧 3)
|
||
for (int i = 0; i < 2 * n; i++) {
|
||
for (int j = 0; j < n + 1; j++) {
|
||
cout << 0 << endl;
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title=""
|
||
def algorithm(n: int) -> None:
|
||
a = 1 # +0(技巧 1)
|
||
a = a + n # +0(技巧 1)
|
||
# +n(技巧 2)
|
||
for i in range(5 * n + 1):
|
||
print(0)
|
||
# +n*n(技巧 3)
|
||
for i in range(2 * n):
|
||
for j in range(n + 1):
|
||
print(0)
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title=""
|
||
func algorithm(n int) {
|
||
a := 1 // +0(技巧 1)
|
||
a = a + n // +0(技巧 1)
|
||
// +n(技巧 2)
|
||
for i := 0; i < 5 * n + 1; i++ {
|
||
fmt.Println(0)
|
||
}
|
||
// +n*n(技巧 3)
|
||
for i := 0; i < 2 * n; i++ {
|
||
for j := 0; j < n + 1; j++ {
|
||
fmt.Println(0)
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title=""
|
||
function algorithm(n) {
|
||
let a = 1; // +0(技巧 1)
|
||
a = a + n; // +0(技巧 1)
|
||
// +n(技巧 2)
|
||
for (let i = 0; i < 5 * n + 1; i++) {
|
||
console.log(0);
|
||
}
|
||
// +n*n(技巧 3)
|
||
for (let i = 0; i < 2 * n; i++) {
|
||
for (let j = 0; j < n + 1; j++) {
|
||
console.log(0);
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title=""
|
||
function algorithm(n: number): void {
|
||
let a = 1; // +0(技巧 1)
|
||
a = a + n; // +0(技巧 1)
|
||
// +n(技巧 2)
|
||
for (let i = 0; i < 5 * n + 1; i++) {
|
||
console.log(0);
|
||
}
|
||
// +n*n(技巧 3)
|
||
for (let i = 0; i < 2 * n; i++) {
|
||
for (let j = 0; j < n + 1; j++) {
|
||
console.log(0);
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title=""
|
||
void algorithm(int n) {
|
||
int a = 1; // +0(技巧 1)
|
||
a = a + n; // +0(技巧 1)
|
||
// +n(技巧 2)
|
||
for (int i = 0; i < 5 * n + 1; i++) {
|
||
printf("%d", 0);
|
||
}
|
||
// +n*n(技巧 3)
|
||
for (int i = 0; i < 2 * n; i++) {
|
||
for (int j = 0; j < n + 1; j++) {
|
||
printf("%d", 0);
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title=""
|
||
void algorithm(int n)
|
||
{
|
||
int a = 1; // +0(技巧 1)
|
||
a = a + n; // +0(技巧 1)
|
||
// +n(技巧 2)
|
||
for (int i = 0; i < 5 * n + 1; i++)
|
||
{
|
||
Console.WriteLine(0);
|
||
}
|
||
// +n*n(技巧 3)
|
||
for (int i = 0; i < 2 * n; i++)
|
||
{
|
||
for (int j = 0; j < n + 1; j++)
|
||
{
|
||
Console.WriteLine(0);
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title=""
|
||
func algorithm(n: Int) {
|
||
var a = 1 // +0(技巧 1)
|
||
a = a + n // +0(技巧 1)
|
||
// +n(技巧 2)
|
||
for _ in 0 ..< (5 * n + 1) {
|
||
print(0)
|
||
}
|
||
// +n*n(技巧 3)
|
||
for _ in 0 ..< (2 * n) {
|
||
for _ in 0 ..< (n + 1) {
|
||
print(0)
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title=""
|
||
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title=""
|
||
void algorithm(int n) {
|
||
int a = 1; // +0(技巧 1)
|
||
a = a + n; // +0(技巧 1)
|
||
// +n(技巧 2)
|
||
for (int i = 0; i < 5 * n + 1; i++) {
|
||
print(0);
|
||
}
|
||
// +n*n(技巧 3)
|
||
for (int i = 0; i < 2 * n; i++) {
|
||
for (int j = 0; j < n + 1; j++) {
|
||
print(0);
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
### 2) 判断渐近上界
|
||
|
||
**时间复杂度由多项式 $T(n)$ 中最高阶的项来决定**。这是因为在 $n$ 趋于无穷大时,最高阶的项将发挥主导作用,其他项的影响都可以被忽略。
|
||
|
||
以下表格展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 $n$ 趋于无穷大时,这些常数变得无足轻重。
|
||
|
||
<div class="center-table" markdown>
|
||
|
||
| 操作数量 $T(n)$ | 时间复杂度 $O(f(n))$ |
|
||
| ---------------------- | -------------------- |
|
||
| $100000$ | $O(1)$ |
|
||
| $3n + 2$ | $O(n)$ |
|
||
| $2n^2 + 3n + 2$ | $O(n^2)$ |
|
||
| $n^3 + 10000n^2$ | $O(n^3)$ |
|
||
| $2^n + 10000n^{10000}$ | $O(2^n)$ |
|
||
|
||
</div>
|
||
|
||
## 2.2.5. 常见类型
|
||
|
||
设输入数据大小为 $n$ ,常见的时间复杂度类型包括(按照从低到高的顺序排列):
|
||
|
||
$$
|
||
\begin{aligned}
|
||
O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!) \newline
|
||
\text{常数阶} < \text{对数阶} < \text{线性阶} < \text{线性对数阶} < \text{平方阶} < \text{指数阶} < \text{阶乘阶}
|
||
\end{aligned}
|
||
$$
|
||
|
||
![时间复杂度的常见类型](time_complexity.assets/time_complexity_common_types.png)
|
||
|
||
<p align="center"> Fig. 时间复杂度的常见类型 </p>
|
||
|
||
!!! tip
|
||
|
||
部分示例代码需要一些预备知识,包括数组、递归算法等。如果遇到不理解的部分,请不要担心,可以在学习完后面章节后再回顾。现阶段,请先专注于理解时间复杂度的含义和推算方法。
|
||
|
||
### 常数阶 $O(1)$
|
||
|
||
常数阶的操作数量与输入数据大小 $n$ 无关,即不随着 $n$ 的变化而变化。
|
||
|
||
对于以下算法,尽管操作数量 `size` 可能很大,但由于其与数据大小 $n$ 无关,因此时间复杂度仍为 $O(1)$ 。
|
||
|
||
=== "Java"
|
||
|
||
```java title="time_complexity.java"
|
||
/* 常数阶 */
|
||
int constant(int n) {
|
||
int count = 0;
|
||
int size = 100000;
|
||
for (int i = 0; i < size; i++)
|
||
count++;
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="time_complexity.cpp"
|
||
/* 常数阶 */
|
||
int constant(int n) {
|
||
int count = 0;
|
||
int size = 100000;
|
||
for (int i = 0; i < size; i++)
|
||
count++;
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="time_complexity.py"
|
||
def constant(n: int) -> int:
|
||
"""常数阶"""
|
||
count = 0
|
||
size = 100000
|
||
for _ in range(size):
|
||
count += 1
|
||
return count
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="time_complexity.go"
|
||
/* 常数阶 */
|
||
func constant(n int) int {
|
||
count := 0
|
||
size := 100000
|
||
for i := 0; i < size; i++ {
|
||
count++
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="time_complexity.js"
|
||
/* 常数阶 */
|
||
function constant(n) {
|
||
let count = 0;
|
||
const size = 100000;
|
||
for (let i = 0; i < size; i++) count++;
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="time_complexity.ts"
|
||
/* 常数阶 */
|
||
function constant(n: number): number {
|
||
let count = 0;
|
||
const size = 100000;
|
||
for (let i = 0; i < size; i++) count++;
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="time_complexity.c"
|
||
/* 常数阶 */
|
||
int constant(int n) {
|
||
int count = 0;
|
||
int size = 100000;
|
||
int i = 0;
|
||
for (int i = 0; i < size; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="time_complexity.cs"
|
||
/* 常数阶 */
|
||
int constant(int n) {
|
||
int count = 0;
|
||
int size = 100000;
|
||
for (int i = 0; i < size; i++)
|
||
count++;
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="time_complexity.swift"
|
||
/* 常数阶 */
|
||
func constant(n: Int) -> Int {
|
||
var count = 0
|
||
let size = 100_000
|
||
for _ in 0 ..< size {
|
||
count += 1
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="time_complexity.zig"
|
||
// 常数阶
|
||
fn constant(n: i32) i32 {
|
||
_ = n;
|
||
var count: i32 = 0;
|
||
const size: i32 = 100_000;
|
||
var i: i32 = 0;
|
||
while(i<size) : (i += 1) {
|
||
count += 1;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="time_complexity.dart"
|
||
/* 常数阶 */
|
||
int constant(int n) {
|
||
int count = 0;
|
||
int size = 100000;
|
||
for (var i = 0; i < size; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
### 线性阶 $O(n)$
|
||
|
||
线性阶的操作数量相对于输入数据大小以线性级别增长。线性阶通常出现在单层循环中。
|
||
|
||
=== "Java"
|
||
|
||
```java title="time_complexity.java"
|
||
/* 线性阶 */
|
||
int linear(int n) {
|
||
int count = 0;
|
||
for (int i = 0; i < n; i++)
|
||
count++;
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="time_complexity.cpp"
|
||
/* 线性阶 */
|
||
int linear(int n) {
|
||
int count = 0;
|
||
for (int i = 0; i < n; i++)
|
||
count++;
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="time_complexity.py"
|
||
def linear(n: int) -> int:
|
||
"""线性阶"""
|
||
count = 0
|
||
for _ in range(n):
|
||
count += 1
|
||
return count
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="time_complexity.go"
|
||
/* 线性阶 */
|
||
func linear(n int) int {
|
||
count := 0
|
||
for i := 0; i < n; i++ {
|
||
count++
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="time_complexity.js"
|
||
/* 线性阶 */
|
||
function linear(n) {
|
||
let count = 0;
|
||
for (let i = 0; i < n; i++) count++;
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="time_complexity.ts"
|
||
/* 线性阶 */
|
||
function linear(n: number): number {
|
||
let count = 0;
|
||
for (let i = 0; i < n; i++) count++;
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="time_complexity.c"
|
||
/* 线性阶 */
|
||
int linear(int n) {
|
||
int count = 0;
|
||
for (int i = 0; i < n; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="time_complexity.cs"
|
||
/* 线性阶 */
|
||
int linear(int n) {
|
||
int count = 0;
|
||
for (int i = 0; i < n; i++)
|
||
count++;
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="time_complexity.swift"
|
||
/* 线性阶 */
|
||
func linear(n: Int) -> Int {
|
||
var count = 0
|
||
for _ in 0 ..< n {
|
||
count += 1
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="time_complexity.zig"
|
||
// 线性阶
|
||
fn linear(n: i32) i32 {
|
||
var count: i32 = 0;
|
||
var i: i32 = 0;
|
||
while (i < n) : (i += 1) {
|
||
count += 1;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="time_complexity.dart"
|
||
/* 线性阶 */
|
||
int linear(int n) {
|
||
int count = 0;
|
||
for (var i = 0; i < n; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
遍历数组和遍历链表等操作的时间复杂度均为 $O(n)$ ,其中 $n$ 为数组或链表的长度。
|
||
|
||
!!! question "如何确定输入数据大小 $n$ ?"
|
||
|
||
**数据大小 $n$ 需根据输入数据的类型来具体确定**。例如,在上述示例中,我们直接将 $n$ 视为输入数据大小;在下面遍历数组的示例中,数据大小 $n$ 为数组的长度。
|
||
|
||
=== "Java"
|
||
|
||
```java title="time_complexity.java"
|
||
/* 线性阶(遍历数组) */
|
||
int arrayTraversal(int[] nums) {
|
||
int count = 0;
|
||
// 循环次数与数组长度成正比
|
||
for (int num : nums) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="time_complexity.cpp"
|
||
/* 线性阶(遍历数组) */
|
||
int arrayTraversal(vector<int> &nums) {
|
||
int count = 0;
|
||
// 循环次数与数组长度成正比
|
||
for (int num : nums) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="time_complexity.py"
|
||
def array_traversal(nums: list[int]) -> int:
|
||
"""线性阶(遍历数组)"""
|
||
count = 0
|
||
# 循环次数与数组长度成正比
|
||
for num in nums:
|
||
count += 1
|
||
return count
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="time_complexity.go"
|
||
/* 线性阶(遍历数组) */
|
||
func arrayTraversal(nums []int) int {
|
||
count := 0
|
||
// 循环次数与数组长度成正比
|
||
for range nums {
|
||
count++
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="time_complexity.js"
|
||
/* 线性阶(遍历数组) */
|
||
function arrayTraversal(nums) {
|
||
let count = 0;
|
||
// 循环次数与数组长度成正比
|
||
for (let i = 0; i < nums.length; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="time_complexity.ts"
|
||
/* 线性阶(遍历数组) */
|
||
function arrayTraversal(nums: number[]): number {
|
||
let count = 0;
|
||
// 循环次数与数组长度成正比
|
||
for (let i = 0; i < nums.length; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="time_complexity.c"
|
||
/* 线性阶(遍历数组) */
|
||
int arrayTraversal(int *nums, int n) {
|
||
int count = 0;
|
||
// 循环次数与数组长度成正比
|
||
for (int i = 0; i < n; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="time_complexity.cs"
|
||
/* 线性阶(遍历数组) */
|
||
int arrayTraversal(int[] nums) {
|
||
int count = 0;
|
||
// 循环次数与数组长度成正比
|
||
foreach (int num in nums) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="time_complexity.swift"
|
||
/* 线性阶(遍历数组) */
|
||
func arrayTraversal(nums: [Int]) -> Int {
|
||
var count = 0
|
||
// 循环次数与数组长度成正比
|
||
for _ in nums {
|
||
count += 1
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="time_complexity.zig"
|
||
// 线性阶(遍历数组)
|
||
fn arrayTraversal(nums: []i32) i32 {
|
||
var count: i32 = 0;
|
||
// 循环次数与数组长度成正比
|
||
for (nums) |_| {
|
||
count += 1;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="time_complexity.dart"
|
||
/* 线性阶(遍历数组) */
|
||
int arrayTraversal(List<int> nums) {
|
||
int count = 0;
|
||
// 循环次数与数组长度成正比
|
||
for (var num in nums) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
### 平方阶 $O(n^2)$
|
||
|
||
平方阶的操作数量相对于输入数据大小以平方级别增长。平方阶通常出现在嵌套循环中,外层循环和内层循环都为 $O(n)$ ,因此总体为 $O(n^2)$ 。
|
||
|
||
=== "Java"
|
||
|
||
```java title="time_complexity.java"
|
||
/* 平方阶 */
|
||
int quadratic(int n) {
|
||
int count = 0;
|
||
// 循环次数与数组长度成平方关系
|
||
for (int i = 0; i < n; i++) {
|
||
for (int j = 0; j < n; j++) {
|
||
count++;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="time_complexity.cpp"
|
||
/* 平方阶 */
|
||
int quadratic(int n) {
|
||
int count = 0;
|
||
// 循环次数与数组长度成平方关系
|
||
for (int i = 0; i < n; i++) {
|
||
for (int j = 0; j < n; j++) {
|
||
count++;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="time_complexity.py"
|
||
def quadratic(n: int) -> int:
|
||
"""平方阶"""
|
||
count = 0
|
||
# 循环次数与数组长度成平方关系
|
||
for i in range(n):
|
||
for j in range(n):
|
||
count += 1
|
||
return count
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="time_complexity.go"
|
||
/* 平方阶 */
|
||
func quadratic(n int) int {
|
||
count := 0
|
||
// 循环次数与数组长度成平方关系
|
||
for i := 0; i < n; i++ {
|
||
for j := 0; j < n; j++ {
|
||
count++
|
||
}
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="time_complexity.js"
|
||
/* 平方阶 */
|
||
function quadratic(n) {
|
||
let count = 0;
|
||
// 循环次数与数组长度成平方关系
|
||
for (let i = 0; i < n; i++) {
|
||
for (let j = 0; j < n; j++) {
|
||
count++;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="time_complexity.ts"
|
||
/* 平方阶 */
|
||
function quadratic(n: number): number {
|
||
let count = 0;
|
||
// 循环次数与数组长度成平方关系
|
||
for (let i = 0; i < n; i++) {
|
||
for (let j = 0; j < n; j++) {
|
||
count++;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="time_complexity.c"
|
||
/* 平方阶 */
|
||
int quadratic(int n) {
|
||
int count = 0;
|
||
// 循环次数与数组长度成平方关系
|
||
for (int i = 0; i < n; i++) {
|
||
for (int j = 0; j < n; j++) {
|
||
count++;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="time_complexity.cs"
|
||
/* 平方阶 */
|
||
int quadratic(int n) {
|
||
int count = 0;
|
||
// 循环次数与数组长度成平方关系
|
||
for (int i = 0; i < n; i++) {
|
||
for (int j = 0; j < n; j++) {
|
||
count++;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="time_complexity.swift"
|
||
/* 平方阶 */
|
||
func quadratic(n: Int) -> Int {
|
||
var count = 0
|
||
// 循环次数与数组长度成平方关系
|
||
for _ in 0 ..< n {
|
||
for _ in 0 ..< n {
|
||
count += 1
|
||
}
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="time_complexity.zig"
|
||
// 平方阶
|
||
fn quadratic(n: i32) i32 {
|
||
var count: i32 = 0;
|
||
var i: i32 = 0;
|
||
// 循环次数与数组长度成平方关系
|
||
while (i < n) : (i += 1) {
|
||
var j: i32 = 0;
|
||
while (j < n) : (j += 1) {
|
||
count += 1;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="time_complexity.dart"
|
||
/* 平方阶 */
|
||
int quadratic(int n) {
|
||
int count = 0;
|
||
// 循环次数与数组长度成平方关系
|
||
for (int i = 0; i < n; i++) {
|
||
for (int j = 0; j < n; j++) {
|
||
count++;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
![常数阶、线性阶、平方阶的时间复杂度](time_complexity.assets/time_complexity_constant_linear_quadratic.png)
|
||
|
||
<p align="center"> Fig. 常数阶、线性阶、平方阶的时间复杂度 </p>
|
||
|
||
以「冒泡排序」为例,外层循环执行 $n - 1$ 次,内层循环执行 $n-1, n-2, \cdots, 2, 1$ 次,平均为 $\frac{n}{2}$ 次,因此时间复杂度为 $O(n^2)$ 。
|
||
|
||
$$
|
||
O((n - 1) \frac{n}{2}) = O(n^2)
|
||
$$
|
||
|
||
=== "Java"
|
||
|
||
```java title="time_complexity.java"
|
||
/* 平方阶(冒泡排序) */
|
||
int bubbleSort(int[] nums) {
|
||
int count = 0; // 计数器
|
||
// 外循环:未排序区间为 [0, i]
|
||
for (int i = nums.length - 1; i > 0; i--) {
|
||
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
||
for (int j = 0; j < i; j++) {
|
||
if (nums[j] > nums[j + 1]) {
|
||
// 交换 nums[j] 与 nums[j + 1]
|
||
int tmp = nums[j];
|
||
nums[j] = nums[j + 1];
|
||
nums[j + 1] = tmp;
|
||
count += 3; // 元素交换包含 3 个单元操作
|
||
}
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="time_complexity.cpp"
|
||
/* 平方阶(冒泡排序) */
|
||
int bubbleSort(vector<int> &nums) {
|
||
int count = 0; // 计数器
|
||
// 外循环:未排序区间为 [0, i]
|
||
for (int i = nums.size() - 1; i > 0; i--) {
|
||
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
||
for (int j = 0; j < i; j++) {
|
||
if (nums[j] > nums[j + 1]) {
|
||
// 交换 nums[j] 与 nums[j + 1]
|
||
int tmp = nums[j];
|
||
nums[j] = nums[j + 1];
|
||
nums[j + 1] = tmp;
|
||
count += 3; // 元素交换包含 3 个单元操作
|
||
}
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="time_complexity.py"
|
||
def bubble_sort(nums: list[int]) -> int:
|
||
"""平方阶(冒泡排序)"""
|
||
count = 0 # 计数器
|
||
# 外循环:未排序区间为 [0, i]
|
||
for i in range(len(nums) - 1, 0, -1):
|
||
# 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
||
for j in range(i):
|
||
if nums[j] > nums[j + 1]:
|
||
# 交换 nums[j] 与 nums[j + 1]
|
||
tmp: int = nums[j]
|
||
nums[j] = nums[j + 1]
|
||
nums[j + 1] = tmp
|
||
count += 3 # 元素交换包含 3 个单元操作
|
||
return count
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="time_complexity.go"
|
||
/* 平方阶(冒泡排序) */
|
||
func bubbleSort(nums []int) int {
|
||
count := 0 // 计数器
|
||
// 外循环:未排序区间为 [0, i]
|
||
for i := len(nums) - 1; i > 0; i-- {
|
||
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
||
for j := 0; j < i; j++ {
|
||
if nums[j] > nums[j+1] {
|
||
// 交换 nums[j] 与 nums[j + 1]
|
||
tmp := nums[j]
|
||
nums[j] = nums[j+1]
|
||
nums[j+1] = tmp
|
||
count += 3 // 元素交换包含 3 个单元操作
|
||
}
|
||
}
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="time_complexity.js"
|
||
/* 平方阶(冒泡排序) */
|
||
function bubbleSort(nums) {
|
||
let count = 0; // 计数器
|
||
// 外循环:未排序区间为 [0, i]
|
||
for (let i = nums.length - 1; i > 0; i--) {
|
||
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
||
for (let j = 0; j < i; j++) {
|
||
if (nums[j] > nums[j + 1]) {
|
||
// 交换 nums[j] 与 nums[j + 1]
|
||
let tmp = nums[j];
|
||
nums[j] = nums[j + 1];
|
||
nums[j + 1] = tmp;
|
||
count += 3; // 元素交换包含 3 个单元操作
|
||
}
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="time_complexity.ts"
|
||
/* 平方阶(冒泡排序) */
|
||
function bubbleSort(nums: number[]): number {
|
||
let count = 0; // 计数器
|
||
// 外循环:未排序区间为 [0, i]
|
||
for (let i = nums.length - 1; i > 0; i--) {
|
||
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
||
for (let j = 0; j < i; j++) {
|
||
if (nums[j] > nums[j + 1]) {
|
||
// 交换 nums[j] 与 nums[j + 1]
|
||
let tmp = nums[j];
|
||
nums[j] = nums[j + 1];
|
||
nums[j + 1] = tmp;
|
||
count += 3; // 元素交换包含 3 个单元操作
|
||
}
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="time_complexity.c"
|
||
/* 平方阶(冒泡排序) */
|
||
int bubbleSort(int *nums, int n) {
|
||
int count = 0; // 计数器
|
||
// 外循环:未排序区间为 [0, i]
|
||
for (int i = n - 1; i > 0; i--) {
|
||
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
||
for (int j = 0; j < i; j++) {
|
||
if (nums[j] > nums[j + 1]) {
|
||
// 交换 nums[j] 与 nums[j + 1]
|
||
int tmp = nums[j];
|
||
nums[j] = nums[j + 1];
|
||
nums[j + 1] = tmp;
|
||
count += 3; // 元素交换包含 3 个单元操作
|
||
}
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="time_complexity.cs"
|
||
/* 平方阶(冒泡排序) */
|
||
int bubbleSort(int[] nums) {
|
||
int count = 0; // 计数器
|
||
// 外循环:未排序区间为 [0, i]
|
||
for (int i = nums.Length - 1; i > 0; i--) {
|
||
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
||
for (int j = 0; j < i; j++) {
|
||
if (nums[j] > nums[j + 1]) {
|
||
// 交换 nums[j] 与 nums[j + 1]
|
||
int tmp = nums[j];
|
||
nums[j] = nums[j + 1];
|
||
nums[j + 1] = tmp;
|
||
count += 3; // 元素交换包含 3 个单元操作
|
||
}
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="time_complexity.swift"
|
||
/* 平方阶(冒泡排序) */
|
||
func bubbleSort(nums: inout [Int]) -> Int {
|
||
var count = 0 // 计数器
|
||
// 外循环:未排序区间为 [0, i]
|
||
for i in stride(from: nums.count - 1, to: 0, by: -1) {
|
||
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
||
for j in 0 ..< i {
|
||
if nums[j] > nums[j + 1] {
|
||
// 交换 nums[j] 与 nums[j + 1]
|
||
let tmp = nums[j]
|
||
nums[j] = nums[j + 1]
|
||
nums[j + 1] = tmp
|
||
count += 3 // 元素交换包含 3 个单元操作
|
||
}
|
||
}
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="time_complexity.zig"
|
||
// 平方阶(冒泡排序)
|
||
fn bubbleSort(nums: []i32) i32 {
|
||
var count: i32 = 0; // 计数器
|
||
// 外循环:未排序区间为 [0, i]
|
||
var i: i32 = @intCast(i32, nums.len ) - 1;
|
||
while (i > 0) : (i -= 1) {
|
||
var j: usize = 0;
|
||
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
||
while (j < i) : (j += 1) {
|
||
if (nums[j] > nums[j + 1]) {
|
||
// 交换 nums[j] 与 nums[j + 1]
|
||
var tmp = nums[j];
|
||
nums[j] = nums[j + 1];
|
||
nums[j + 1] = tmp;
|
||
count += 3; // 元素交换包含 3 个单元操作
|
||
}
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="time_complexity.dart"
|
||
/* 平方阶(冒泡排序) */
|
||
int bubbleSort(List<int> nums) {
|
||
int count = 0; // 计数器
|
||
// 外循环:未排序区间为 [0, i]
|
||
for (var i = nums.length - 1; i > 0; i--) {
|
||
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
||
for (var j = 0; j < i; j++) {
|
||
if (nums[j] > nums[j + 1]) {
|
||
// 交换 nums[j] 与 nums[j + 1]
|
||
int tmp = nums[j];
|
||
nums[j] = nums[j + 1];
|
||
nums[j + 1] = tmp;
|
||
count += 3; // 元素交换包含 3 个单元操作
|
||
}
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
### 指数阶 $O(2^n)$
|
||
|
||
!!! note
|
||
|
||
生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 $1$ 个细胞,分裂一轮后变为 $2$ 个,分裂两轮后变为 $4$ 个,以此类推,分裂 $n$ 轮后有 $2^n$ 个细胞。
|
||
|
||
指数阶增长非常迅速,在实际应用中通常是不可接受的。若一个问题使用「暴力枚举」求解的时间复杂度为 $O(2^n)$ ,那么通常需要使用「动态规划」或「贪心算法」等方法来解决。
|
||
|
||
=== "Java"
|
||
|
||
```java title="time_complexity.java"
|
||
/* 指数阶(循环实现) */
|
||
int exponential(int n) {
|
||
int count = 0, base = 1;
|
||
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||
for (int i = 0; i < n; i++) {
|
||
for (int j = 0; j < base; j++) {
|
||
count++;
|
||
}
|
||
base *= 2;
|
||
}
|
||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="time_complexity.cpp"
|
||
/* 指数阶(循环实现) */
|
||
int exponential(int n) {
|
||
int count = 0, base = 1;
|
||
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||
for (int i = 0; i < n; i++) {
|
||
for (int j = 0; j < base; j++) {
|
||
count++;
|
||
}
|
||
base *= 2;
|
||
}
|
||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="time_complexity.py"
|
||
def exponential(n: int) -> int:
|
||
"""指数阶(循环实现)"""
|
||
count = 0
|
||
base = 1
|
||
# cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||
for _ in range(n):
|
||
for _ in range(base):
|
||
count += 1
|
||
base *= 2
|
||
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
return count
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="time_complexity.go"
|
||
/* 指数阶(循环实现)*/
|
||
func exponential(n int) int {
|
||
count, base := 0, 1
|
||
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||
for i := 0; i < n; i++ {
|
||
for j := 0; j < base; j++ {
|
||
count++
|
||
}
|
||
base *= 2
|
||
}
|
||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="time_complexity.js"
|
||
/* 指数阶(循环实现) */
|
||
function exponential(n) {
|
||
let count = 0,
|
||
base = 1;
|
||
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||
for (let i = 0; i < n; i++) {
|
||
for (let j = 0; j < base; j++) {
|
||
count++;
|
||
}
|
||
base *= 2;
|
||
}
|
||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="time_complexity.ts"
|
||
/* 指数阶(循环实现) */
|
||
function exponential(n: number): number {
|
||
let count = 0,
|
||
base = 1;
|
||
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||
for (let i = 0; i < n; i++) {
|
||
for (let j = 0; j < base; j++) {
|
||
count++;
|
||
}
|
||
base *= 2;
|
||
}
|
||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="time_complexity.c"
|
||
/* 指数阶(循环实现) */
|
||
int exponential(int n) {
|
||
int count = 0;
|
||
int bas = 1;
|
||
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||
for (int i = 0; i < n; i++) {
|
||
for (int j = 0; j < bas; j++) {
|
||
count++;
|
||
}
|
||
bas *= 2;
|
||
}
|
||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="time_complexity.cs"
|
||
/* 指数阶(循环实现) */
|
||
int exponential(int n) {
|
||
int count = 0, bas = 1;
|
||
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||
for (int i = 0; i < n; i++) {
|
||
for (int j = 0; j < bas; j++) {
|
||
count++;
|
||
}
|
||
bas *= 2;
|
||
}
|
||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="time_complexity.swift"
|
||
/* 指数阶(循环实现) */
|
||
func exponential(n: Int) -> Int {
|
||
var count = 0
|
||
var base = 1
|
||
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||
for _ in 0 ..< n {
|
||
for _ in 0 ..< base {
|
||
count += 1
|
||
}
|
||
base *= 2
|
||
}
|
||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="time_complexity.zig"
|
||
// 指数阶(循环实现)
|
||
fn exponential(n: i32) i32 {
|
||
var count: i32 = 0;
|
||
var bas: i32 = 1;
|
||
var i: i32 = 0;
|
||
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||
while (i < n) : (i += 1) {
|
||
var j: i32 = 0;
|
||
while (j < bas) : (j += 1) {
|
||
count += 1;
|
||
}
|
||
bas *= 2;
|
||
}
|
||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="time_complexity.dart"
|
||
/* 指数阶(循环实现) */
|
||
int exponential(int n) {
|
||
int count = 0, base = 1;
|
||
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||
for (var i = 0; i < n; i++) {
|
||
for (var j = 0; j < base; j++) {
|
||
count++;
|
||
}
|
||
base *= 2;
|
||
}
|
||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
return count;
|
||
}
|
||
```
|
||
|
||
![指数阶的时间复杂度](time_complexity.assets/time_complexity_exponential.png)
|
||
|
||
<p align="center"> Fig. 指数阶的时间复杂度 </p>
|
||
|
||
在实际算法中,指数阶常出现于递归函数。例如以下代码,不断地一分为二,经过 $n$ 次分裂后停止。
|
||
|
||
=== "Java"
|
||
|
||
```java title="time_complexity.java"
|
||
/* 指数阶(递归实现) */
|
||
int expRecur(int n) {
|
||
if (n == 1)
|
||
return 1;
|
||
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="time_complexity.cpp"
|
||
/* 指数阶(递归实现) */
|
||
int expRecur(int n) {
|
||
if (n == 1)
|
||
return 1;
|
||
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="time_complexity.py"
|
||
def exp_recur(n: int) -> int:
|
||
"""指数阶(递归实现)"""
|
||
if n == 1:
|
||
return 1
|
||
return exp_recur(n - 1) + exp_recur(n - 1) + 1
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="time_complexity.go"
|
||
/* 指数阶(递归实现)*/
|
||
func expRecur(n int) int {
|
||
if n == 1 {
|
||
return 1
|
||
}
|
||
return expRecur(n-1) + expRecur(n-1) + 1
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="time_complexity.js"
|
||
/* 指数阶(递归实现) */
|
||
function expRecur(n) {
|
||
if (n == 1) return 1;
|
||
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="time_complexity.ts"
|
||
/* 指数阶(递归实现) */
|
||
function expRecur(n: number): number {
|
||
if (n == 1) return 1;
|
||
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="time_complexity.c"
|
||
/* 指数阶(递归实现) */
|
||
int expRecur(int n) {
|
||
if (n == 1)
|
||
return 1;
|
||
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="time_complexity.cs"
|
||
/* 指数阶(递归实现) */
|
||
int expRecur(int n) {
|
||
if (n == 1) return 1;
|
||
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="time_complexity.swift"
|
||
/* 指数阶(递归实现) */
|
||
func expRecur(n: Int) -> Int {
|
||
if n == 1 {
|
||
return 1
|
||
}
|
||
return expRecur(n: n - 1) + expRecur(n: n - 1) + 1
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="time_complexity.zig"
|
||
// 指数阶(递归实现)
|
||
fn expRecur(n: i32) i32 {
|
||
if (n == 1) return 1;
|
||
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="time_complexity.dart"
|
||
/* 指数阶(递归实现) */
|
||
int expRecur(int n) {
|
||
if (n == 1) return 1;
|
||
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
||
}
|
||
```
|
||
|
||
### 对数阶 $O(\log n)$
|
||
|
||
与指数阶相反,对数阶反映了“每轮缩减到一半的情况”。对数阶仅次于常数阶,时间增长缓慢,是理想的时间复杂度。
|
||
|
||
对数阶常出现于「二分查找」和「分治算法」中,体现了“一分为多”和“化繁为简”的算法思想。
|
||
|
||
设输入数据大小为 $n$ ,由于每轮缩减到一半,因此循环次数是 $\log_2 n$ ,即 $2^n$ 的反函数。
|
||
|
||
=== "Java"
|
||
|
||
```java title="time_complexity.java"
|
||
/* 对数阶(循环实现) */
|
||
int logarithmic(float n) {
|
||
int count = 0;
|
||
while (n > 1) {
|
||
n = n / 2;
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="time_complexity.cpp"
|
||
/* 对数阶(循环实现) */
|
||
int logarithmic(float n) {
|
||
int count = 0;
|
||
while (n > 1) {
|
||
n = n / 2;
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="time_complexity.py"
|
||
def logarithmic(n: float) -> int:
|
||
"""对数阶(循环实现)"""
|
||
count = 0
|
||
while n > 1:
|
||
n = n / 2
|
||
count += 1
|
||
return count
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="time_complexity.go"
|
||
/* 对数阶(循环实现)*/
|
||
func logarithmic(n float64) int {
|
||
count := 0
|
||
for n > 1 {
|
||
n = n / 2
|
||
count++
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="time_complexity.js"
|
||
/* 对数阶(循环实现) */
|
||
function logarithmic(n) {
|
||
let count = 0;
|
||
while (n > 1) {
|
||
n = n / 2;
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="time_complexity.ts"
|
||
/* 对数阶(循环实现) */
|
||
function logarithmic(n: number): number {
|
||
let count = 0;
|
||
while (n > 1) {
|
||
n = n / 2;
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="time_complexity.c"
|
||
/* 对数阶(循环实现) */
|
||
int logarithmic(float n) {
|
||
int count = 0;
|
||
while (n > 1) {
|
||
n = n / 2;
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="time_complexity.cs"
|
||
/* 对数阶(循环实现) */
|
||
int logarithmic(float n) {
|
||
int count = 0;
|
||
while (n > 1) {
|
||
n = n / 2;
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="time_complexity.swift"
|
||
/* 对数阶(循环实现) */
|
||
func logarithmic(n: Double) -> Int {
|
||
var count = 0
|
||
var n = n
|
||
while n > 1 {
|
||
n = n / 2
|
||
count += 1
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="time_complexity.zig"
|
||
// 对数阶(循环实现)
|
||
fn logarithmic(n: f32) i32 {
|
||
var count: i32 = 0;
|
||
var n_var = n;
|
||
while (n_var > 1)
|
||
{
|
||
n_var = n_var / 2;
|
||
count +=1;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="time_complexity.dart"
|
||
/* 对数阶(循环实现) */
|
||
int logarithmic(num n) {
|
||
int count = 0;
|
||
while (n > 1) {
|
||
n = n / 2;
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
![对数阶的时间复杂度](time_complexity.assets/time_complexity_logarithmic.png)
|
||
|
||
<p align="center"> Fig. 对数阶的时间复杂度 </p>
|
||
|
||
与指数阶类似,对数阶也常出现于递归函数。以下代码形成了一个高度为 $\log_2 n$ 的递归树。
|
||
|
||
=== "Java"
|
||
|
||
```java title="time_complexity.java"
|
||
/* 对数阶(递归实现) */
|
||
int logRecur(float n) {
|
||
if (n <= 1)
|
||
return 0;
|
||
return logRecur(n / 2) + 1;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="time_complexity.cpp"
|
||
/* 对数阶(递归实现) */
|
||
int logRecur(float n) {
|
||
if (n <= 1)
|
||
return 0;
|
||
return logRecur(n / 2) + 1;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="time_complexity.py"
|
||
def log_recur(n: float) -> int:
|
||
"""对数阶(递归实现)"""
|
||
if n <= 1:
|
||
return 0
|
||
return log_recur(n / 2) + 1
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="time_complexity.go"
|
||
/* 对数阶(递归实现)*/
|
||
func logRecur(n float64) int {
|
||
if n <= 1 {
|
||
return 0
|
||
}
|
||
return logRecur(n/2) + 1
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="time_complexity.js"
|
||
/* 对数阶(递归实现) */
|
||
function logRecur(n) {
|
||
if (n <= 1) return 0;
|
||
return logRecur(n / 2) + 1;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="time_complexity.ts"
|
||
/* 对数阶(递归实现) */
|
||
function logRecur(n: number): number {
|
||
if (n <= 1) return 0;
|
||
return logRecur(n / 2) + 1;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="time_complexity.c"
|
||
/* 对数阶(递归实现) */
|
||
int logRecur(float n) {
|
||
if (n <= 1)
|
||
return 0;
|
||
return logRecur(n / 2) + 1;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="time_complexity.cs"
|
||
/* 对数阶(递归实现) */
|
||
int logRecur(float n) {
|
||
if (n <= 1) return 0;
|
||
return logRecur(n / 2) + 1;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="time_complexity.swift"
|
||
/* 对数阶(递归实现) */
|
||
func logRecur(n: Double) -> Int {
|
||
if n <= 1 {
|
||
return 0
|
||
}
|
||
return logRecur(n: n / 2) + 1
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="time_complexity.zig"
|
||
// 对数阶(递归实现)
|
||
fn logRecur(n: f32) i32 {
|
||
if (n <= 1) return 0;
|
||
return logRecur(n / 2) + 1;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="time_complexity.dart"
|
||
/* 对数阶(递归实现) */
|
||
int logRecur(num n) {
|
||
if (n <= 1) return 0;
|
||
return logRecur(n / 2) + 1;
|
||
}
|
||
```
|
||
|
||
### 线性对数阶 $O(n \log n)$
|
||
|
||
线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 $O(\log n)$ 和 $O(n)$ 。
|
||
|
||
主流排序算法的时间复杂度通常为 $O(n \log n)$ ,例如快速排序、归并排序、堆排序等。
|
||
|
||
=== "Java"
|
||
|
||
```java title="time_complexity.java"
|
||
/* 线性对数阶 */
|
||
int linearLogRecur(float n) {
|
||
if (n <= 1)
|
||
return 1;
|
||
int count = linearLogRecur(n / 2) +
|
||
linearLogRecur(n / 2);
|
||
for (int i = 0; i < n; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="time_complexity.cpp"
|
||
/* 线性对数阶 */
|
||
int linearLogRecur(float n) {
|
||
if (n <= 1)
|
||
return 1;
|
||
int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
|
||
for (int i = 0; i < n; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="time_complexity.py"
|
||
def linear_log_recur(n: float) -> int:
|
||
"""线性对数阶"""
|
||
if n <= 1:
|
||
return 1
|
||
count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)
|
||
for _ in range(n):
|
||
count += 1
|
||
return count
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="time_complexity.go"
|
||
/* 线性对数阶 */
|
||
func linearLogRecur(n float64) int {
|
||
if n <= 1 {
|
||
return 1
|
||
}
|
||
count := linearLogRecur(n/2) +
|
||
linearLogRecur(n/2)
|
||
for i := 0.0; i < n; i++ {
|
||
count++
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="time_complexity.js"
|
||
/* 线性对数阶 */
|
||
function linearLogRecur(n) {
|
||
if (n <= 1) return 1;
|
||
let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
|
||
for (let i = 0; i < n; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="time_complexity.ts"
|
||
/* 线性对数阶 */
|
||
function linearLogRecur(n: number): number {
|
||
if (n <= 1) return 1;
|
||
let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
|
||
for (let i = 0; i < n; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="time_complexity.c"
|
||
/* 线性对数阶 */
|
||
int linearLogRecur(float n) {
|
||
if (n <= 1)
|
||
return 1;
|
||
int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
|
||
for (int i = 0; i < n; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="time_complexity.cs"
|
||
/* 线性对数阶 */
|
||
int linearLogRecur(float n) {
|
||
if (n <= 1) return 1;
|
||
int count = linearLogRecur(n / 2) +
|
||
linearLogRecur(n / 2);
|
||
for (int i = 0; i < n; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="time_complexity.swift"
|
||
/* 线性对数阶 */
|
||
func linearLogRecur(n: Double) -> Int {
|
||
if n <= 1 {
|
||
return 1
|
||
}
|
||
var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)
|
||
for _ in stride(from: 0, to: n, by: 1) {
|
||
count += 1
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="time_complexity.zig"
|
||
// 线性对数阶
|
||
fn linearLogRecur(n: f32) i32 {
|
||
if (n <= 1) return 1;
|
||
var count: i32 = linearLogRecur(n / 2) +
|
||
linearLogRecur(n / 2);
|
||
var i: f32 = 0;
|
||
while (i < n) : (i += 1) {
|
||
count += 1;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="time_complexity.dart"
|
||
/* 线性对数阶 */
|
||
int linearLogRecur(num n) {
|
||
if (n <= 1) return 1;
|
||
int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
|
||
for (var i = 0; i < n; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
![线性对数阶的时间复杂度](time_complexity.assets/time_complexity_logarithmic_linear.png)
|
||
|
||
<p align="center"> Fig. 线性对数阶的时间复杂度 </p>
|
||
|
||
### 阶乘阶 $O(n!)$
|
||
|
||
阶乘阶对应数学上的「全排列」问题。给定 $n$ 个互不重复的元素,求其所有可能的排列方案,方案数量为:
|
||
|
||
$$
|
||
n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1
|
||
$$
|
||
|
||
阶乘通常使用递归实现。例如以下代码,第一层分裂出 $n$ 个,第二层分裂出 $n - 1$ 个,以此类推,直至第 $n$ 层时终止分裂。
|
||
|
||
=== "Java"
|
||
|
||
```java title="time_complexity.java"
|
||
/* 阶乘阶(递归实现) */
|
||
int factorialRecur(int n) {
|
||
if (n == 0)
|
||
return 1;
|
||
int count = 0;
|
||
// 从 1 个分裂出 n 个
|
||
for (int i = 0; i < n; i++) {
|
||
count += factorialRecur(n - 1);
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="time_complexity.cpp"
|
||
/* 阶乘阶(递归实现) */
|
||
int factorialRecur(int n) {
|
||
if (n == 0)
|
||
return 1;
|
||
int count = 0;
|
||
// 从 1 个分裂出 n 个
|
||
for (int i = 0; i < n; i++) {
|
||
count += factorialRecur(n - 1);
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="time_complexity.py"
|
||
def factorial_recur(n: int) -> int:
|
||
"""阶乘阶(递归实现)"""
|
||
if n == 0:
|
||
return 1
|
||
count = 0
|
||
# 从 1 个分裂出 n 个
|
||
for _ in range(n):
|
||
count += factorial_recur(n - 1)
|
||
return count
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="time_complexity.go"
|
||
/* 阶乘阶(递归实现) */
|
||
func factorialRecur(n int) int {
|
||
if n == 0 {
|
||
return 1
|
||
}
|
||
count := 0
|
||
// 从 1 个分裂出 n 个
|
||
for i := 0; i < n; i++ {
|
||
count += factorialRecur(n - 1)
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="time_complexity.js"
|
||
/* 阶乘阶(递归实现) */
|
||
function factorialRecur(n) {
|
||
if (n == 0) return 1;
|
||
let count = 0;
|
||
// 从 1 个分裂出 n 个
|
||
for (let i = 0; i < n; i++) {
|
||
count += factorialRecur(n - 1);
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="time_complexity.ts"
|
||
/* 阶乘阶(递归实现) */
|
||
function factorialRecur(n: number): number {
|
||
if (n == 0) return 1;
|
||
let count = 0;
|
||
// 从 1 个分裂出 n 个
|
||
for (let i = 0; i < n; i++) {
|
||
count += factorialRecur(n - 1);
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="time_complexity.c"
|
||
/* 阶乘阶(递归实现) */
|
||
int factorialRecur(int n) {
|
||
if (n == 0)
|
||
return 1;
|
||
int count = 0;
|
||
for (int i = 0; i < n; i++) {
|
||
count += factorialRecur(n - 1);
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="time_complexity.cs"
|
||
/* 阶乘阶(递归实现) */
|
||
int factorialRecur(int n) {
|
||
if (n == 0) return 1;
|
||
int count = 0;
|
||
// 从 1 个分裂出 n 个
|
||
for (int i = 0; i < n; i++) {
|
||
count += factorialRecur(n - 1);
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="time_complexity.swift"
|
||
/* 阶乘阶(递归实现) */
|
||
func factorialRecur(n: Int) -> Int {
|
||
if n == 0 {
|
||
return 1
|
||
}
|
||
var count = 0
|
||
// 从 1 个分裂出 n 个
|
||
for _ in 0 ..< n {
|
||
count += factorialRecur(n: n - 1)
|
||
}
|
||
return count
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="time_complexity.zig"
|
||
// 阶乘阶(递归实现)
|
||
fn factorialRecur(n: i32) i32 {
|
||
if (n == 0) return 1;
|
||
var count: i32 = 0;
|
||
var i: i32 = 0;
|
||
// 从 1 个分裂出 n 个
|
||
while (i < n) : (i += 1) {
|
||
count += factorialRecur(n - 1);
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="time_complexity.dart"
|
||
/* 阶乘阶(递归实现) */
|
||
int factorialRecur(int n) {
|
||
if (n == 0) return 1;
|
||
int count = 0;
|
||
// 从 1 个分裂出 n 个
|
||
for (var i = 0; i < n; i++) {
|
||
count += factorialRecur(n - 1);
|
||
}
|
||
return count;
|
||
}
|
||
```
|
||
|
||
![阶乘阶的时间复杂度](time_complexity.assets/time_complexity_factorial.png)
|
||
|
||
<p align="center"> Fig. 阶乘阶的时间复杂度 </p>
|
||
|
||
## 2.2.6. 最差、最佳、平均时间复杂度
|
||
|
||
**某些算法的时间复杂度不是固定的,而是与输入数据的分布有关**。例如,假设输入一个长度为 $n$ 的数组 `nums` ,其中 `nums` 由从 $1$ 至 $n$ 的数字组成,但元素顺序是随机打乱的;算法的任务是返回元素 $1$ 的索引。我们可以得出以下结论:
|
||
|
||
- 当 `nums = [?, ?, ..., 1]` ,即当末尾元素是 $1$ 时,需要完整遍历数组,此时达到 **最差时间复杂度 $O(n)$**;
|
||
- 当 `nums = [1, ?, ?, ...]` ,即当首个数字为 $1$ 时,无论数组多长都不需要继续遍历,此时达到 **最佳时间复杂度 $\Omega(1)$**;
|
||
|
||
“函数渐近上界”使用大 $O$ 记号表示,代表「最差时间复杂度」。相应地,“函数渐近下界”用 $\Omega$ 记号来表示,代表「最佳时间复杂度」。
|
||
|
||
=== "Java"
|
||
|
||
```java title="worst_best_time_complexity.java"
|
||
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
|
||
int[] randomNumbers(int n) {
|
||
Integer[] nums = new Integer[n];
|
||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||
for (int i = 0; i < n; i++) {
|
||
nums[i] = i + 1;
|
||
}
|
||
// 随机打乱数组元素
|
||
Collections.shuffle(Arrays.asList(nums));
|
||
// Integer[] -> int[]
|
||
int[] res = new int[n];
|
||
for (int i = 0; i < n; i++) {
|
||
res[i] = nums[i];
|
||
}
|
||
return res;
|
||
}
|
||
|
||
/* 查找数组 nums 中数字 1 所在索引 */
|
||
int findOne(int[] nums) {
|
||
for (int i = 0; i < nums.length; i++) {
|
||
// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
|
||
// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
|
||
if (nums[i] == 1)
|
||
return i;
|
||
}
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="worst_best_time_complexity.cpp"
|
||
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
|
||
vector<int> randomNumbers(int n) {
|
||
vector<int> nums(n);
|
||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||
for (int i = 0; i < n; i++) {
|
||
nums[i] = i + 1;
|
||
}
|
||
// 使用系统时间生成随机种子
|
||
unsigned seed = chrono::system_clock::now().time_since_epoch().count();
|
||
// 随机打乱数组元素
|
||
shuffle(nums.begin(), nums.end(), default_random_engine(seed));
|
||
return nums;
|
||
}
|
||
|
||
/* 查找数组 nums 中数字 1 所在索引 */
|
||
int findOne(vector<int> &nums) {
|
||
for (int i = 0; i < nums.size(); i++) {
|
||
// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
|
||
// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
|
||
if (nums[i] == 1)
|
||
return i;
|
||
}
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="worst_best_time_complexity.py"
|
||
def random_numbers(n: int) -> list[int]:
|
||
"""生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱"""
|
||
# 生成数组 nums =: 1, 2, 3, ..., n
|
||
nums = [i for i in range(1, n + 1)]
|
||
# 随机打乱数组元素
|
||
random.shuffle(nums)
|
||
return nums
|
||
|
||
def find_one(nums: list[int]) -> int:
|
||
"""查找数组 nums 中数字 1 所在索引"""
|
||
for i in range(len(nums)):
|
||
# 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
|
||
# 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
|
||
if nums[i] == 1:
|
||
return i
|
||
return -1
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="worst_best_time_complexity.go"
|
||
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
|
||
func randomNumbers(n int) []int {
|
||
nums := make([]int, n)
|
||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||
for i := 0; i < n; i++ {
|
||
nums[i] = i + 1
|
||
}
|
||
// 随机打乱数组元素
|
||
rand.Shuffle(len(nums), func(i, j int) {
|
||
nums[i], nums[j] = nums[j], nums[i]
|
||
})
|
||
return nums
|
||
}
|
||
|
||
/* 查找数组 nums 中数字 1 所在索引 */
|
||
func findOne(nums []int) int {
|
||
for i := 0; i < len(nums); i++ {
|
||
// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
|
||
// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
|
||
if nums[i] == 1 {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="worst_best_time_complexity.js"
|
||
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
|
||
function randomNumbers(n) {
|
||
const nums = Array(n);
|
||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||
for (let i = 0; i < n; i++) {
|
||
nums[i] = i + 1;
|
||
}
|
||
// 随机打乱数组元素
|
||
for (let i = 0; i < n; i++) {
|
||
const r = Math.floor(Math.random() * (i + 1));
|
||
const temp = nums[i];
|
||
nums[i] = nums[r];
|
||
nums[r] = temp;
|
||
}
|
||
return nums;
|
||
}
|
||
|
||
/* 查找数组 nums 中数字 1 所在索引 */
|
||
function findOne(nums) {
|
||
for (let i = 0; i < nums.length; i++) {
|
||
// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
|
||
// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
|
||
if (nums[i] === 1) {
|
||
return i;
|
||
}
|
||
}
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="worst_best_time_complexity.ts"
|
||
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
|
||
function randomNumbers(n: number): number[] {
|
||
const nums = Array(n);
|
||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||
for (let i = 0; i < n; i++) {
|
||
nums[i] = i + 1;
|
||
}
|
||
// 随机打乱数组元素
|
||
for (let i = 0; i < n; i++) {
|
||
const r = Math.floor(Math.random() * (i + 1));
|
||
const temp = nums[i];
|
||
nums[i] = nums[r];
|
||
nums[r] = temp;
|
||
}
|
||
return nums;
|
||
}
|
||
|
||
/* 查找数组 nums 中数字 1 所在索引 */
|
||
function findOne(nums: number[]): number {
|
||
for (let i = 0; i < nums.length; i++) {
|
||
// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
|
||
// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
|
||
if (nums[i] === 1) {
|
||
return i;
|
||
}
|
||
}
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="worst_best_time_complexity.c"
|
||
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
|
||
int *randomNumbers(int n) {
|
||
// 分配堆区内存(创建一维可变长数组:数组中元素数量为n,元素类型为int)
|
||
int *nums = (int *)malloc(n * sizeof(int));
|
||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||
for (int i = 0; i < n; i++) {
|
||
nums[i] = i + 1;
|
||
}
|
||
// 随机打乱数组元素
|
||
for (int i = n - 1; i > 0; i--) {
|
||
int j = rand() % (i + 1);
|
||
int temp = nums[i];
|
||
nums[i] = nums[j];
|
||
nums[j] = temp;
|
||
}
|
||
return nums;
|
||
}
|
||
|
||
/* 查找数组 nums 中数字 1 所在索引 */
|
||
int findOne(int *nums, int n) {
|
||
for (int i = 0; i < n; i++) {
|
||
// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
|
||
// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
|
||
if (nums[i] == 1)
|
||
return i;
|
||
}
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="worst_best_time_complexity.cs"
|
||
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
|
||
int[] randomNumbers(int n) {
|
||
int[] nums = new int[n];
|
||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||
for (int i = 0; i < n; i++) {
|
||
nums[i] = i + 1;
|
||
}
|
||
|
||
// 随机打乱数组元素
|
||
for (int i = 0; i < nums.Length; i++) {
|
||
var index = new Random().Next(i, nums.Length);
|
||
var tmp = nums[i];
|
||
var ran = nums[index];
|
||
nums[i] = ran;
|
||
nums[index] = tmp;
|
||
}
|
||
return nums;
|
||
}
|
||
|
||
/* 查找数组 nums 中数字 1 所在索引 */
|
||
int findOne(int[] nums) {
|
||
for (int i = 0; i < nums.Length; i++) {
|
||
// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
|
||
// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
|
||
if (nums[i] == 1)
|
||
return i;
|
||
}
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="worst_best_time_complexity.swift"
|
||
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
|
||
func randomNumbers(n: Int) -> [Int] {
|
||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||
var nums = Array(1 ... n)
|
||
// 随机打乱数组元素
|
||
nums.shuffle()
|
||
return nums
|
||
}
|
||
|
||
/* 查找数组 nums 中数字 1 所在索引 */
|
||
func findOne(nums: [Int]) -> Int {
|
||
for i in nums.indices {
|
||
// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
|
||
// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
|
||
if nums[i] == 1 {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="worst_best_time_complexity.zig"
|
||
// 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱
|
||
pub fn randomNumbers(comptime n: usize) [n]i32 {
|
||
var nums: [n]i32 = undefined;
|
||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||
for (nums) |*num, i| {
|
||
num.* = @intCast(i32, i) + 1;
|
||
}
|
||
// 随机打乱数组元素
|
||
const rand = std.crypto.random;
|
||
rand.shuffle(i32, &nums);
|
||
return nums;
|
||
}
|
||
|
||
// 查找数组 nums 中数字 1 所在索引
|
||
pub fn findOne(nums: []i32) i32 {
|
||
for (nums) |num, i| {
|
||
// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
|
||
// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
|
||
if (num == 1) return @intCast(i32, i);
|
||
}
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="worst_best_time_complexity.dart"
|
||
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
|
||
List<int> randomNumbers(int n) {
|
||
final nums = List.filled(n, 0);
|
||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||
for (var i = 0; i < n; i++) {
|
||
nums[i] = i + 1;
|
||
}
|
||
// 随机打乱数组元素
|
||
nums.shuffle();
|
||
|
||
return nums;
|
||
}
|
||
|
||
/* 查找数组 nums 中数字 1 所在索引 */
|
||
int findOne(List<int> nums) {
|
||
for (var i = 0; i < nums.length; i++) {
|
||
// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
|
||
// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
|
||
if (nums[i] == 1) return i;
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
```
|
||
|
||
!!! tip
|
||
|
||
实际应用中我们很少使用「最佳时间复杂度」,因为通常只有在很小概率下才能达到,可能会带来一定的误导性。相反,「最差时间复杂度」更为实用,因为它给出了一个“效率安全值”,让我们可以放心地使用算法。
|
||
|
||
从上述示例可以看出,最差或最佳时间复杂度只出现在“特殊分布的数据”中,这些情况的出现概率可能很小,因此并不能最真实地反映算法运行效率。相较之下,**「平均时间复杂度」可以体现算法在随机输入数据下的运行效率**,用 $\Theta$ 记号来表示。
|
||
|
||
对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 $1$ 出现在任意索引的概率都是相等的,那么算法的平均循环次数则是数组长度的一半 $\frac{n}{2}$ ,平均时间复杂度为 $\Theta(\frac{n}{2}) = \Theta(n)$ 。
|
||
|
||
但在实际应用中,尤其是较为复杂的算法,计算平均时间复杂度比较困难,因为很难简便地分析出在数据分布下的整体数学期望。在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。
|
||
|
||
!!! question "为什么很少看到 $\Theta$ 符号?"
|
||
|
||
可能由于 $O$ 符号过于朗朗上口,我们常常使用它来表示「平均复杂度」,但从严格意义上看,这种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 $O(n)$”的表述,请将其直接理解为 $\Theta(n)$ 。
|