* Update the chapter graph * Update the chapter graph * Update the chapter graph * Update the chapter graph
15 KiB
图
「图 Graph」是一种非线性数据结构,由「顶点 Vertex」和「边 Edge」组成。我们可将图 G
抽象地表示为一组顶点 V
和一组边 E
的集合。例如,以下表示一个包含 5 个顶点和 7 条边的图
$$
\begin{aligned}
V & = { 1, 2, 3, 4, 5 } \newline
E & = { (1,2), (1,3), (1,5), (2,3), (2,4), (2,5), (4,5) } \newline
G & = { V, E } \newline
\end{aligned}
那么,图与其他数据结构的关系是什么?如果我们把「顶点」看作结点,把「边」看作连接各个结点的指针,则可将「图」看成一种从「链表」拓展而来的数据结构。相比线性关系(链表)和分治关系(树),网络关系(图)的自由度更高,也从而更为复杂。
图常见类型
根据边是否有方向,分为「无向图 Undirected Graph」和「有向图 Directed Graph」。
- 在无向图中,边表示两结点之间“双向”的连接关系,例如微信或 QQ 中的“好友关系”;
- 在有向图中,边是有方向的,即
A \rightarrow B
和A \leftarrow B
两个方向的边是相互独立的,例如微博或抖音上的“关注”与“被关注”关系;
根据所有顶点是否连通,分为「连通图 Connected Graph」和「非连通图 Disconnected Graph」。
- 对于连通图,从某个结点出发,可以到达其余任意结点;
- 对于非连通图,从某个结点出发,至少有一个结点无法到达;
我们可以给边添加“权重”变量,得到「有权图 Weighted Graph」。例如,在王者荣耀等游戏中,系统会根据共同游戏时间来计算玩家之间的“亲密度”,这种亲密度网络就可以使用有权图来表示。
图常用术语
- 「邻接 Adjacency」:当两顶点之间有边相连时,称此两顶点“邻接”。
- 「路径 Path」:从顶点 A 到顶点 B 走过的边构成的序列,被称为从 A 到 B 的“路径”。
- 「度 Degree」表示一个顶点具有多少条边。对于有向图,「入度 In-Degree」表示有多少条边指向该顶点,「出度 Out-Degree」表示有多少条边从该顶点指出。
图的表示
图的常用表示方法有「邻接矩阵」和「邻接表」。以下皆使用无边图来举例。
邻接矩阵
设图的顶点数量为 n
,「邻接矩阵 Adjacency Matrix」使用一个 n \times n
大小的矩阵来表示图,每一行(列)代表一个顶点,矩阵元素代表边,使用 1
或 0
来表示两个顶点之间有边或无边。
邻接矩阵具有以下性质:
- 顶点不能与自身相连,因而邻接矩阵主对角线元素没有意义。
- 「无向图」两个方向的边等价,此时邻接矩阵关于主对角线对称。
- 将邻接矩阵的元素从
1
,0
替换为权重,则能够表示「有权图」。
使用邻接矩阵表示图时,我们可以直接通过访问矩阵元素来获取边,因此增删查操作的效率很高,时间复杂度均为 O(1)
。然而,矩阵的空间复杂度为 O(n^2)
,内存占用较大。
邻接表
「邻接表 Adjacency List」使用 n
个链表来表示图,链表结点表示顶点。第 i
条链表对应顶点 i
,其中存储了所有与该顶点相连的顶点。
邻接表仅存储存在的边,而边的总数往往远小于 n^2
,因此更加节省空间。但是,因为在邻接表中需要通过遍历链表来查找边,所以其时间效率不如邻接矩阵。
观察上图发现,邻接表结构与哈希表「链地址法」非常相似,因此我们也可以用类似方法来优化效率。比如,当链表较长时,可以把链表转化为「AVL 树」,从而将时间效率从 O(n)
优化至 O(\log n)
,还可以通过中序遍历获取有序序列;还可以将链表转化为 HashSet(即哈希表),将时间复杂度降低至 O(1)
,。
图基础操作
以下分别介绍图在「邻接矩阵」和「邻接表」表示下的基础操作。
基于邻接矩阵的实现
设图的顶点总数为 n
,则有:
- 添加或删除边:直接在邻接矩阵中修改指定边的对应元素即可,使用
O(1)
时间。而由于是无向图,因此需要同时更新两个方向的边。 - 添加顶点:在邻接矩阵的尾部添加一行一列,并全部填
0
即可,使用O(n)
时间。 - 删除顶点:在邻接矩阵中删除一行一列。当删除首行首列时达到最差情况,需要将
(n-1)^2
个元素“向左上移动”,从而使用O(n^2)
时间。 - 初始化:传入
n
个顶点,初始化长度为n
的顶点列表vertices
,使用O(n)
时间;初始化n \times n
大小的邻接矩阵adjMat
,使用O(n^2)
时间。
以下是基于邻接矩阵表示图的实现代码。
=== "Java"
```java title="graph_adjacency_matrix.java"
/* 基于邻接矩阵实现的无向图类 */
class GraphAdjMat {
List<Integer> vertices; // 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
List<List<Integer>> adjMat; // 邻接矩阵,行列索引对应“顶点索引”
/* 构造函数 */
public GraphAdjMat(int[] vertices, int[][] edges) {
this.vertices = new ArrayList<>();
this.adjMat = new ArrayList<>();
// 添加顶点
for (int val : vertices) {
addVertex(val);
}
// 添加边
// 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
for (int[] e : edges) {
addEdge(e[0], e[1]);
}
}
/* 获取顶点数量 */
public int size() {
return vertices.size();
}
/* 添加顶点 */
public void addVertex(int val) {
int n = size();
// 向顶点列表中添加新顶点的值
vertices.add(val);
// 在邻接矩阵中添加一行
List<Integer> newRow = new ArrayList<>(n);
for (int j = 0; j < n; j++) {
newRow.add(0);
}
adjMat.add(newRow);
// 在邻接矩阵中添加一列
for (List<Integer> row : adjMat) {
row.add(0);
}
}
/* 删除顶点 */
public void removeVertex(int index) {
if (index >= size())
throw new IndexOutOfBoundsException();
// 在顶点列表中移除索引 index 的顶点
vertices.remove(index);
// 在邻接矩阵中删除索引 index 的行
adjMat.remove(index);
// 在邻接矩阵中删除索引 index 的列
for (List<Integer> row : adjMat) {
row.remove(index);
}
}
/* 添加边 */
// 参数 i, j 对应 vertices 元素索引
public void addEdge(int i, int j) {
// 索引越界与相等处理
if (i < 0 || j < 0 || i >= size() || j >= size() || i == j)
throw new IndexOutOfBoundsException();
// 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i)
adjMat.get(i).set(j, 1);
adjMat.get(j).set(i, 1);
}
/* 删除边 */
// 参数 i, j 对应 vertices 元素索引
public void removeEdge(int i, int j) {
// 索引越界与相等处理
if (i < 0 || j < 0 || i >= size() || j >= size() || i == j)
throw new IndexOutOfBoundsException();
adjMat.get(i).set(j, 0);
adjMat.get(j).set(i, 0);
}
}
```
=== "C++"
```cpp title="graph_adjacency_matrix.cpp"
```
=== "Python"
```python title="graph_adjacency_matrix.py"
```
=== "Go"
```go title="graph_adjacency_matrix.go"
```
=== "JavaScript"
```js title="graph_adjacency_matrix.js"
```
=== "TypeScript"
```typescript title="graph_adjacency_matrix.ts"
```
=== "C"
```c title="graph_adjacency_matrix.c"
```
=== "C#"
```csharp title="graph_adjacency_matrix.cs"
```
=== "Swift"
```swift title="graph_adjacency_matrix.swift"
```
基于邻接表的实现
设图的顶点总数为 n
、边总数为 m
,则有:
- 添加边:在顶点对应链表的尾部添加边即可,使用
O(1)
时间。因为是无向图,所以需要同时添加两个方向的边。 - 删除边:在顶点对应链表中查询与删除指定边,使用
O(m)
时间。与添加边一样,需要同时删除两个方向的边。 - 添加顶点:在邻接表中添加一个链表即可,并以新增顶点为链表头结点,使用
O(1)
时间。 - 删除顶点:需要遍历整个邻接表,删除包含指定顶点的所有边,使用
O(n + m)
时间。 - 初始化:需要在邻接表中建立
n
个结点和2m
条边,使用O(n + m)
时间。
基于邻接表实现图的代码如下所示。
=== "Java"
```java title="graph_adjacency_list.java"
/* 顶点类 */
class Vertex {
int val;
public Vertex(int val) {
this.val = val;
}
}
/* 基于邻接表实现的无向图类 */
class GraphAdjList {
// 请注意,vertices 和 adjList 中存储的都是 Vertex 对象
Map<Vertex, Set<Vertex>> adjList; // 邻接表(使用哈希表实现)
/* 构造函数 */
public GraphAdjList(Vertex[][] edges) {
this.adjList = new HashMap<>();
// 添加所有顶点和边
for (Vertex[] edge : edges) {
addVertex(edge[0]);
addVertex(edge[1]);
addEdge(edge[0], edge[1]);
}
}
/* 获取顶点数量 */
public int size() {
return adjList.size();
}
/* 添加边 */
public void addEdge(Vertex vet1, Vertex vet2) {
if (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)
throw new IllegalArgumentException();
// 添加边 vet1 - vet2
adjList.get(vet1).add(vet2);
adjList.get(vet2).add(vet1);
}
/* 删除边 */
public void removeEdge(Vertex vet1, Vertex vet2) {
if (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)
throw new IllegalArgumentException();
// 删除边 vet1 - vet2
adjList.get(vet1).remove(vet2);
adjList.get(vet2).remove(vet1);
}
/* 添加顶点 */
public void addVertex(Vertex vet) {
if (adjList.containsKey(vet))
return;
// 在邻接表中添加一个新链表(即 HashSet)
adjList.put(vet, new HashSet<>());
}
/* 删除顶点 */
public void removeVertex(Vertex vet) {
if (!adjList.containsKey(vet))
throw new IllegalArgumentException();
// 在邻接表中删除顶点 vet 对应的链表(即 HashSet)
adjList.remove(vet);
// 遍历其它顶点的链表(即 HashSet),删除所有包含 vet 的边
for (Set<Vertex> set : adjList.values()) {
set.remove(vet);
}
}
}
```
=== "C++"
```cpp title="graph_adjacency_list.cpp"
```
=== "Python"
```python title="graph_adjacency_list.py"
```
=== "Go"
```go title="graph_adjacency_list.go"
```
=== "JavaScript"
```js title="graph_adjacency_list.js"
```
=== "TypeScript"
```typescript title="graph_adjacency_list.ts"
```
=== "C"
```c title="graph_adjacency_list.c"
```
=== "C#"
```csharp title="graph_adjacency_list.cs"
```
=== "Swift"
```swift title="graph_adjacency_list.swift"
```
效率对比
设图中共有 n
个顶点和 m
条边,下表为邻接矩阵和邻接表的时间和空间效率对比。
邻接矩阵 | 邻接表(链表) | 邻接表(哈希表) | |
---|---|---|---|
判断是否邻接 | O(1) |
O(m) |
O(1) |
添加边 | O(1) |
O(1) |
O(1) |
删除边 | O(1) |
O(m) |
O(1) |
添加顶点 | O(n) |
O(1) |
O(1) |
删除顶点 | O(n^2) |
O(n + m) |
O(n) |
内存空间占用 | O(n^2) |
O(n + m) |
O(n + m) |
观察上表,貌似邻接表(哈希表)的时间与空间效率最优。但实际上,在邻接矩阵中操作边的效率更高,只需要一次数组访问或赋值操作即可。总结以上,邻接矩阵体现“以空间换时间”,邻接表体现“以时间换空间”。
图常见应用
现实中的许多系统都可以使用图来建模,对应的待求解问题也可以被约化为图计算问题。
顶点 | 边 | 图计算问题 | |
---|---|---|---|
社交网络 | 用户 | 好友关系 | 潜在好友推荐 |
地铁线路 | 站点 | 站点间的连通性 | 最短路线推荐 |
太阳系 | 星体 | 星体间的万有引力作用 | 行星轨道计算 |