hello-algo/docs/chapter_backtracking/subset_sum_problem.md
2023-09-17 01:13:15 +08:00

371 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 子集和问题
## 无重复元素的情况
!!! question
给定一个正整数数组 `nums` 和一个目标正整数 `target` ,请找出所有可能的组合,使得组合中的元素和等于 `target` 。给定数组无重复元素,每个元素可以被选取多次。请以列表形式返回这些组合,列表中不应包含重复组合。
例如,输入集合 $\{3, 4, 5\}$ 和目标整数 $9$ ,解为 $\{3, 3, 3\}, \{4, 5\}$ 。需要注意以下两点。
- 输入集合中的元素可以被无限次重复选取。
- 子集是不区分元素顺序的,比如 $\{4, 5\}$ 和 $\{5, 4\}$ 是同一个子集。
### 参考全排列解法
类似于全排列问题,我们可以把子集的生成过程想象成一系列选择的结果,并在选择过程中实时更新“元素和”,当元素和等于 `target` 时,就将子集记录至结果列表。
而与全排列问题不同的是,**本题集合中的元素可以被无限次选取**,因此无须借助 `selected` 布尔列表来记录元素是否已被选择。我们可以对全排列代码进行小幅修改,初步得到解题代码。
=== "Python"
```python title="subset_sum_i_naive.py"
[class]{}-[func]{backtrack}
[class]{}-[func]{subset_sum_i_naive}
```
=== "C++"
```cpp title="subset_sum_i_naive.cpp"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumINaive}
```
=== "Java"
```java title="subset_sum_i_naive.java"
[class]{subset_sum_i_naive}-[func]{backtrack}
[class]{subset_sum_i_naive}-[func]{subsetSumINaive}
```
=== "C#"
```csharp title="subset_sum_i_naive.cs"
[class]{subset_sum_i_naive}-[func]{backtrack}
[class]{subset_sum_i_naive}-[func]{subsetSumINaive}
```
=== "Go"
```go title="subset_sum_i_naive.go"
[class]{}-[func]{backtrackSubsetSumINaive}
[class]{}-[func]{subsetSumINaive}
```
=== "Swift"
```swift title="subset_sum_i_naive.swift"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumINaive}
```
=== "JS"
```javascript title="subset_sum_i_naive.js"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumINaive}
```
=== "TS"
```typescript title="subset_sum_i_naive.ts"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumINaive}
```
=== "Dart"
```dart title="subset_sum_i_naive.dart"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumINaive}
```
=== "Rust"
```rust title="subset_sum_i_naive.rs"
[class]{}-[func]{backtrack}
[class]{}-[func]{subset_sum_i_naive}
```
=== "C"
```c title="subset_sum_i_naive.c"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumINaive}
```
=== "Zig"
```zig title="subset_sum_i_naive.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumINaive}
```
向以上代码输入数组 $[3, 4, 5]$ 和目标元素 $9$ ,输出结果为 $[3, 3, 3], [4, 5], [5, 4]$ 。**虽然成功找出了所有和为 $9$ 的子集,但其中存在重复的子集 $[4, 5]$ 和 $[5, 4]$** 。
这是因为搜索过程是区分选择顺序的,然而子集不区分选择顺序。如下图所示,先选 $4$ 后选 $5$ 与先选 $5$ 后选 $4$ 是两个不同的分支,但两者对应同一个子集。
![子集搜索与越界剪枝](subset_sum_problem.assets/subset_sum_i_naive.png)
为了去除重复子集,**一种直接的思路是对结果列表进行去重**。但这个方法效率很低,有两方面原因。
- 当数组元素较多,尤其是当 `target` 较大时,搜索过程会产生大量的重复子集。
- 比较子集(数组)的异同非常耗时,需要先排序数组,再比较数组中每个元素的异同。
### 重复子集剪枝
**我们考虑在搜索过程中通过剪枝进行去重**。观察下图,重复子集是在以不同顺序选择数组元素时产生的,例如以下情况。
1. 当第一轮和第二轮分别选择 $3$ 和 $4$ 时,会生成包含这两个元素的所有子集,记为 $[3, 4, \dots]$ 。
2. 之后,当第一轮选择 $4$ 时,**则第二轮应该跳过 $3$** ,因为该选择产生的子集 $[4, 3, \dots]$ 和 `1.` 中生成的子集完全重复。
在搜索中,每一层的选择都是从左到右被逐个尝试的,因此越靠右的分支被剪掉的越多。
1. 前两轮选择 $3$ 和 $5$ ,生成子集 $[3, 5, \dots]$ 。
2. 前两轮选择 $4$ 和 $5$ ,生成子集 $[4, 5, \dots]$ 。
3. 若第一轮选择 $5$ **则第二轮应该跳过 $3$ 和 $4$** ,因为子集 $[5, 3, \dots]$ 和 $[5, 4, \dots]$ 与第 `1.``2.` 步中描述的子集完全重复。
![不同选择顺序导致的重复子集](subset_sum_problem.assets/subset_sum_i_pruning.png)
总结来看,给定输入数组 $[x_1, x_2, \dots, x_n]$ ,设搜索过程中的选择序列为 $[x_{i_1}, x_{i_2}, \dots, x_{i_m}]$ ,则该选择序列需要满足 $i_1 \leq i_2 \leq \dots \leq i_m$ **不满足该条件的选择序列都会造成重复,应当剪枝**。
### 代码实现
为实现该剪枝,我们初始化变量 `start` ,用于指示遍历起点。**当做出选择 $x_{i}$ 后,设定下一轮从索引 $i$ 开始遍历**。这样做就可以让选择序列满足 $i_1 \leq i_2 \leq \dots \leq i_m$ ,从而保证子集唯一。
除此之外,我们还对代码进行了以下两项优化。
- 在开启搜索前,先将数组 `nums` 排序。在遍历所有选择时,**当子集和超过 `target` 时直接结束循环**,因为后边的元素更大,其子集和都一定会超过 `target`
- 省去元素和变量 `total` **通过在 `target` 上执行减法来统计元素和**,当 `target` 等于 $0$ 时记录解。
=== "Python"
```python title="subset_sum_i.py"
[class]{}-[func]{backtrack}
[class]{}-[func]{subset_sum_i}
```
=== "C++"
```cpp title="subset_sum_i.cpp"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumI}
```
=== "Java"
```java title="subset_sum_i.java"
[class]{subset_sum_i}-[func]{backtrack}
[class]{subset_sum_i}-[func]{subsetSumI}
```
=== "C#"
```csharp title="subset_sum_i.cs"
[class]{subset_sum_i}-[func]{backtrack}
[class]{subset_sum_i}-[func]{subsetSumI}
```
=== "Go"
```go title="subset_sum_i.go"
[class]{}-[func]{backtrackSubsetSumI}
[class]{}-[func]{subsetSumI}
```
=== "Swift"
```swift title="subset_sum_i.swift"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumI}
```
=== "JS"
```javascript title="subset_sum_i.js"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumI}
```
=== "TS"
```typescript title="subset_sum_i.ts"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumI}
```
=== "Dart"
```dart title="subset_sum_i.dart"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumI}
```
=== "Rust"
```rust title="subset_sum_i.rs"
[class]{}-[func]{backtrack}
[class]{}-[func]{subset_sum_i}
```
=== "C"
```c title="subset_sum_i.c"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumI}
```
=== "Zig"
```zig title="subset_sum_i.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumI}
```
如下图所示,为将数组 $[3, 4, 5]$ 和目标元素 $9$ 输入到以上代码后的整体回溯过程。
![子集和 I 回溯过程](subset_sum_problem.assets/subset_sum_i.png)
## 考虑重复元素的情况
!!! question
给定一个正整数数组 `nums` 和一个目标正整数 `target` ,请找出所有可能的组合,使得组合中的元素和等于 `target` 。**给定数组可能包含重复元素,每个元素只可被选择一次**。请以列表形式返回这些组合,列表中不应包含重复组合。
相比于上题,**本题的输入数组可能包含重复元素**,这引入了新的问题。例如,给定数组 $[4, \hat{4}, 5]$ 和目标元素 $9$ ,则现有代码的输出结果为 $[4, 5], [\hat{4}, 5]$ ,出现了重复子集。
**造成这种重复的原因是相等元素在某轮中被多次选择**。在下图中,第一轮共有三个选择,其中两个都为 $4$ ,会产生两个重复的搜索分支,从而输出重复子集;同理,第二轮的两个 $4$ 也会产生重复子集。
![相等元素导致的重复子集](subset_sum_problem.assets/subset_sum_ii_repeat.png)
### 相等元素剪枝
为解决此问题,**我们需要限制相等元素在每一轮中只被选择一次**。实现方式比较巧妙:由于数组是已排序的,因此相等元素都是相邻的。这意味着在某轮选择中,若当前元素与其左边元素相等,则说明它已经被选择过,因此直接跳过当前元素。
与此同时,**本题规定中的每个数组元素只能被选择一次**。幸运的是,我们也可以利用变量 `start` 来满足该约束:当做出选择 $x_{i}$ 后,设定下一轮从索引 $i + 1$ 开始向后遍历。这样即能去除重复子集,也能避免重复选择元素。
### 代码实现
=== "Python"
```python title="subset_sum_ii.py"
[class]{}-[func]{backtrack}
[class]{}-[func]{subset_sum_ii}
```
=== "C++"
```cpp title="subset_sum_ii.cpp"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumII}
```
=== "Java"
```java title="subset_sum_ii.java"
[class]{subset_sum_ii}-[func]{backtrack}
[class]{subset_sum_ii}-[func]{subsetSumII}
```
=== "C#"
```csharp title="subset_sum_ii.cs"
[class]{subset_sum_ii}-[func]{backtrack}
[class]{subset_sum_ii}-[func]{subsetSumII}
```
=== "Go"
```go title="subset_sum_ii.go"
[class]{}-[func]{backtrackSubsetSumII}
[class]{}-[func]{subsetSumII}
```
=== "Swift"
```swift title="subset_sum_ii.swift"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumII}
```
=== "JS"
```javascript title="subset_sum_ii.js"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumII}
```
=== "TS"
```typescript title="subset_sum_ii.ts"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumII}
```
=== "Dart"
```dart title="subset_sum_ii.dart"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumII}
```
=== "Rust"
```rust title="subset_sum_ii.rs"
[class]{}-[func]{backtrack}
[class]{}-[func]{subset_sum_ii}
```
=== "C"
```c title="subset_sum_ii.c"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumII}
```
=== "Zig"
```zig title="subset_sum_ii.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumII}
```
下图展示了数组 $[4, 4, 5]$ 和目标元素 $9$ 的回溯过程,共包含四种剪枝操作。请你将图示与代码注释相结合,理解整个搜索过程,以及每种剪枝操作是如何工作的。
![子集和 II 回溯过程](subset_sum_problem.assets/subset_sum_ii.png)