mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 11:26:29 +08:00
build
This commit is contained in:
parent
14a64ebdb2
commit
1ad1db6730
2 changed files with 399 additions and 2 deletions
397
chapter_dynamic_programming/edit_distance_problem.md
Normal file
397
chapter_dynamic_programming/edit_distance_problem.md
Normal file
|
@ -0,0 +1,397 @@
|
|||
---
|
||||
comments: true
|
||||
---
|
||||
|
||||
# 13.6. 编辑距离问题
|
||||
|
||||
编辑距离,也被称为 Levenshtein 距离,是两个字符串之间互相转换的最小修改次数,通常用于在信息检索和自然语言处理中度量两个序列的相似度。
|
||||
|
||||
!!! question
|
||||
|
||||
输入两个字符串 $s$ 和 $t$ ,返回将 $s$ 转换为 $t$ 所需的最少编辑步数。
|
||||
|
||||
你可以在一个字符串中进行三种编辑操作:插入一个字符、删除一个字符、替换字符为任意一个字符。
|
||||
|
||||
如下图所示,将 `kitten` 转换为 `sitting` 需要编辑 3 步,包括 2 次替换操作与 1 次添加操作;将 `hello` 转换为 `algo` 需要 3 步,包括 2 次替换操作和 1 次删除操作。
|
||||
|
||||
![编辑距离的示例数据](edit_distance_problem.assets/edit_distance_example.png)
|
||||
|
||||
<p align="center"> Fig. 编辑距离的示例数据 </p>
|
||||
|
||||
**编辑距离问题可以很自然地用决策树模型来解释**。字符串对应树节点,一轮决策(一次编辑操作)对应树的一条边。
|
||||
|
||||
如下图所示,在不限制操作的情况下,每个节点都可以派生出许多条边,每条边对应一种操作。实际上,从 `hello` 转换到 `algo` 有许多种可能的路径,下图展示的是最短路径。从决策树的角度看,本题目标是求解节点 `hello` 和节点 `algo` 之间的最短路径。
|
||||
|
||||
![基于决策树模型表示编辑距离问题](edit_distance_problem.assets/edit_distance_decision_tree.png)
|
||||
|
||||
<p align="center"> Fig. 基于决策树模型表示编辑距离问题 </p>
|
||||
|
||||
**第一步:思考每轮的决策,定义状态,从而得到 $dp$ 表**
|
||||
|
||||
每一轮的决策是对字符串 $s$ 进行一次编辑操作。
|
||||
|
||||
我们希望在编辑操作的过程中,问题的规模逐渐缩小,这样才能构建子问题。设字符串 $s$ 和 $t$ 的长度分别为 $n$ 和 $m$ ,我们先考虑两字符串尾部的字符 $s[n-1]$ 和 $t[m-1]$ :
|
||||
|
||||
- 若 $s[n-1]$ 和 $t[m-1]$ 相同,我们可以直接跳过它们,接下来考虑 $s[n-2]$ 和 $t[m-2]$ ;
|
||||
- 若 $s[n-1]$ 和 $t[m-1]$ 不同,我们需要对 $s$ 进行一次编辑(插入、删除、替换),使得两字符串尾部的字符相同,从而可以跳过它们,考虑规模更小的问题;
|
||||
|
||||
也就是说,我们在字符串 $s$ 中进行的每一轮决策(编辑操作),都会使得 $s$ 和 $t$ 中剩余的待匹配字符发生变化。因此,状态定义为当前在 $s$ , $t$ 中考虑的第 $i$ , $j$ 个字符,记为 $[i, j]$ 。
|
||||
|
||||
状态 $[i, j]$ 对应的子问题:**将 $s$ 的前 $i$ 个字符更改为 $t$ 的前 $j$ 个字符所需的最少编辑步数**。
|
||||
|
||||
至此得到一个尺寸为 $(i+1) \times (j+1)$ 的二维 $dp$ 表。
|
||||
|
||||
**第二步:找出最优子结构,进而推导出状态转移方程**
|
||||
|
||||
考虑子问题 $dp[i, j]$ ,其对应的两个字符串的尾部字符为 $s[i-1]$ 和 $t[j-1]$ ,可根据不同编辑操作分为三种情况:
|
||||
|
||||
1. 在 $s$ 尾部添加 $t[j-1]$ ,则剩余子问题 $dp[i, j-1]$ ;
|
||||
2. 删除 $s[i-1]$ ,则剩余子问题 $dp[i-1, j]$ ;
|
||||
3. 将 $s[i-1]$ 替换为 $t[j-1]$ ,则剩余子问题 $dp[i-1, j-1]$ ;
|
||||
|
||||
![编辑距离的状态转移](edit_distance_problem.assets/edit_distance_state_transfer.png)
|
||||
|
||||
<p align="center"> Fig. 编辑距离的状态转移 </p>
|
||||
|
||||
根据以上分析,可得最优子结构:$dp[i, j]$ 的最少编辑步数等于 $dp[i, j-1]$ , $dp[i-1, j]$ , $dp[i-1, j-1]$ 三者中的最少编辑步数,再加上本次编辑的步数 $1$ 。对应的状态转移方程为:
|
||||
|
||||
$$
|
||||
dp[i, j] = \min(dp[i, j-1], dp[i-1, j], dp[i-1, j-1]) + 1
|
||||
$$
|
||||
|
||||
请注意,**当 $s[i-1]$ 和 $t[j-1]$ 相同时,无需编辑当前字符**,此时状态转移方程为:
|
||||
|
||||
$$
|
||||
dp[i, j] = dp[i-1, j-1]
|
||||
$$
|
||||
|
||||
**第三步:确定边界条件和状态转移顺序**
|
||||
|
||||
当两字符串都为空时,编辑步数为 $0$ ,即 $dp[0, 0] = 0$ 。当 $s$ 为空但 $t$ 不为空时,最少编辑步数等于 $t$ 的长度,即 $dp[0, j] = j$ 。当 $s$ 不为空但 $t$ 为空时,等于 $s$ 的长度,即 $dp[i, 0] = i$ 。
|
||||
|
||||
观察状态转移方程,解 $dp[i, j]$ 依赖左方、上方、左上方的解,因此通过两层循环正序遍历整个 $dp$ 表即可。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="edit_distance.java"
|
||||
/* 编辑距离:动态规划 */
|
||||
int editDistanceDP(String s, String t) {
|
||||
int n = s.length(), m = t.length();
|
||||
int[][] dp = new int[n + 1][m + 1];
|
||||
// 状态转移:首行首列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
dp[i][0] = i;
|
||||
}
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[0][j] = j;
|
||||
}
|
||||
// 状态转移:其余行列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int j = 1; j <= m; j++) {
|
||||
if (s.charAt(i - 1) == t.charAt(j - 1)) {
|
||||
// 若两字符相等,则直接跳过此两字符
|
||||
dp[i][j] = dp[i - 1][j - 1];
|
||||
} else {
|
||||
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="edit_distance.cpp"
|
||||
/* 编辑距离:动态规划 */
|
||||
int editDistanceDP(string s, string t) {
|
||||
int n = s.length(), m = t.length();
|
||||
vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));
|
||||
// 状态转移:首行首列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
dp[i][0] = i;
|
||||
}
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[0][j] = j;
|
||||
}
|
||||
// 状态转移:其余行列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int j = 1; j <= m; j++) {
|
||||
if (s[i - 1] == t[j - 1]) {
|
||||
// 若两字符相等,则直接跳过此两字符
|
||||
dp[i][j] = dp[i - 1][j - 1];
|
||||
} else {
|
||||
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="edit_distance.py"
|
||||
def edit_distance_dp(s: str, t: str) -> int:
|
||||
"""编辑距离:动态规划"""
|
||||
n, m = len(s), len(t)
|
||||
dp = [[0] * (m + 1) for _ in range(n + 1)]
|
||||
# 状态转移:首行首列
|
||||
for i in range(1, n + 1):
|
||||
dp[i][0] = i
|
||||
for j in range(1, m + 1):
|
||||
dp[0][j] = j
|
||||
# 状态转移:其余行列
|
||||
for i in range(1, n + 1):
|
||||
for j in range(1, m + 1):
|
||||
if s[i - 1] == t[j - 1]:
|
||||
# 若两字符相等,则直接跳过此两字符
|
||||
dp[i][j] = dp[i - 1][j - 1]
|
||||
else:
|
||||
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1
|
||||
return dp[n][m]
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="edit_distance.go"
|
||||
[class]{}-[func]{editDistanceDP}
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript title="edit_distance.js"
|
||||
[class]{}-[func]{editDistanceDP}
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="edit_distance.ts"
|
||||
[class]{}-[func]{editDistanceDP}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="edit_distance.c"
|
||||
[class]{}-[func]{editDistanceDP}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="edit_distance.cs"
|
||||
[class]{edit_distance}-[func]{editDistanceDP}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="edit_distance.swift"
|
||||
[class]{}-[func]{editDistanceDP}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="edit_distance.zig"
|
||||
[class]{}-[func]{editDistanceDP}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="edit_distance.dart"
|
||||
[class]{}-[func]{editDistanceDP}
|
||||
```
|
||||
|
||||
如下图所示,编辑距离问题的状态转移过程与背包问题非常类似,都可以看作是填写一个二维网格的过程。
|
||||
|
||||
=== "<1>"
|
||||
![编辑距离的动态规划过程](edit_distance_problem.assets/edit_distance_dp_step1.png)
|
||||
|
||||
=== "<2>"
|
||||
![edit_distance_dp_step2](edit_distance_problem.assets/edit_distance_dp_step2.png)
|
||||
|
||||
=== "<3>"
|
||||
![edit_distance_dp_step3](edit_distance_problem.assets/edit_distance_dp_step3.png)
|
||||
|
||||
=== "<4>"
|
||||
![edit_distance_dp_step4](edit_distance_problem.assets/edit_distance_dp_step4.png)
|
||||
|
||||
=== "<5>"
|
||||
![edit_distance_dp_step5](edit_distance_problem.assets/edit_distance_dp_step5.png)
|
||||
|
||||
=== "<6>"
|
||||
![edit_distance_dp_step6](edit_distance_problem.assets/edit_distance_dp_step6.png)
|
||||
|
||||
=== "<7>"
|
||||
![edit_distance_dp_step7](edit_distance_problem.assets/edit_distance_dp_step7.png)
|
||||
|
||||
=== "<8>"
|
||||
![edit_distance_dp_step8](edit_distance_problem.assets/edit_distance_dp_step8.png)
|
||||
|
||||
=== "<9>"
|
||||
![edit_distance_dp_step9](edit_distance_problem.assets/edit_distance_dp_step9.png)
|
||||
|
||||
=== "<10>"
|
||||
![edit_distance_dp_step10](edit_distance_problem.assets/edit_distance_dp_step10.png)
|
||||
|
||||
=== "<11>"
|
||||
![edit_distance_dp_step11](edit_distance_problem.assets/edit_distance_dp_step11.png)
|
||||
|
||||
=== "<12>"
|
||||
![edit_distance_dp_step12](edit_distance_problem.assets/edit_distance_dp_step12.png)
|
||||
|
||||
=== "<13>"
|
||||
![edit_distance_dp_step13](edit_distance_problem.assets/edit_distance_dp_step13.png)
|
||||
|
||||
=== "<14>"
|
||||
![edit_distance_dp_step14](edit_distance_problem.assets/edit_distance_dp_step14.png)
|
||||
|
||||
=== "<15>"
|
||||
![edit_distance_dp_step15](edit_distance_problem.assets/edit_distance_dp_step15.png)
|
||||
|
||||
下面考虑状态压缩,将 $dp$ 表的第一维删除。由于 $dp[i,j]$ 是由上方 $dp[i-1, j]$ 、左方 $dp[i, j-1]$ 、左上方状态 $dp[i-1, j-1]$ 转移而来,而正序遍历会丢失左上方 $dp[i-1, j-1]$ ,倒序遍历无法提前构建 $dp[i, j-1]$ ,因此两种遍历顺序都不可取。
|
||||
|
||||
为解决此问题,我们可以使用一个变量 `leftup` 来暂存左上方的解 $dp[i-1, j-1]$ ,这样便只用考虑左方和上方的解,与完全背包问题的情况相同,可使用正序遍历。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="edit_distance.java"
|
||||
/* 编辑距离:状态压缩后的动态规划 */
|
||||
int editDistanceDPComp(String s, String t) {
|
||||
int n = s.length(), m = t.length();
|
||||
int[] dp = new int[m + 1];
|
||||
// 状态转移:首行
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[j] = j;
|
||||
}
|
||||
// 状态转移:其余行
|
||||
for (int i = 1; i <= n; i++) {
|
||||
// 状态转移:首列
|
||||
int leftup = dp[0]; // 暂存 dp[i-1, j-1]
|
||||
dp[0] = i;
|
||||
// 状态转移:其余列
|
||||
for (int j = 1; j <= m; j++) {
|
||||
int temp = dp[j];
|
||||
if (s.charAt(i - 1) == t.charAt(j - 1)) {
|
||||
// 若两字符相等,则直接跳过此两字符
|
||||
dp[j] = leftup;
|
||||
} else {
|
||||
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
dp[j] = Math.min(Math.min(dp[j - 1], dp[j]), leftup) + 1;
|
||||
}
|
||||
leftup = temp; // 更新为下一轮的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="edit_distance.cpp"
|
||||
/* 编辑距离:状态压缩后的动态规划 */
|
||||
int editDistanceDPComp(string s, string t) {
|
||||
int n = s.length(), m = t.length();
|
||||
vector<int> dp(m + 1, 0);
|
||||
// 状态转移:首行
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[j] = j;
|
||||
}
|
||||
// 状态转移:其余行
|
||||
for (int i = 1; i <= n; i++) {
|
||||
// 状态转移:首列
|
||||
int leftup = dp[0]; // 暂存 dp[i-1, j-1]
|
||||
dp[0] = i;
|
||||
// 状态转移:其余列
|
||||
for (int j = 1; j <= m; j++) {
|
||||
int temp = dp[j];
|
||||
if (s[i - 1] == t[j - 1]) {
|
||||
// 若两字符相等,则直接跳过此两字符
|
||||
dp[j] = leftup;
|
||||
} else {
|
||||
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;
|
||||
}
|
||||
leftup = temp; // 更新为下一轮的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="edit_distance.py"
|
||||
def edit_distance_dp_comp(s: str, t: str) -> int:
|
||||
"""编辑距离:状态压缩后的动态规划"""
|
||||
n, m = len(s), len(t)
|
||||
dp = [0] * (m + 1)
|
||||
# 状态转移:首行
|
||||
for j in range(1, m + 1):
|
||||
dp[j] = j
|
||||
# 状态转移:其余行
|
||||
for i in range(1, n + 1):
|
||||
# 状态转移:首列
|
||||
leftup = dp[0] # 暂存 dp[i-1, j-1]
|
||||
dp[0] += 1
|
||||
# 状态转移:其余列
|
||||
for j in range(1, m + 1):
|
||||
temp = dp[j]
|
||||
if s[i - 1] == t[j - 1]:
|
||||
# 若两字符相等,则直接跳过此两字符
|
||||
dp[j] = leftup
|
||||
else:
|
||||
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
dp[j] = min(dp[j - 1], dp[j], leftup) + 1
|
||||
leftup = temp # 更新为下一轮的 dp[i-1, j-1]
|
||||
return dp[m]
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="edit_distance.go"
|
||||
[class]{}-[func]{editDistanceDPComp}
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript title="edit_distance.js"
|
||||
[class]{}-[func]{editDistanceDPComp}
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="edit_distance.ts"
|
||||
[class]{}-[func]{editDistanceDPComp}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="edit_distance.c"
|
||||
[class]{}-[func]{editDistanceDPComp}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="edit_distance.cs"
|
||||
[class]{edit_distance}-[func]{editDistanceDPComp}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="edit_distance.swift"
|
||||
[class]{}-[func]{editDistanceDPComp}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="edit_distance.zig"
|
||||
[class]{}-[func]{editDistanceDPComp}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="edit_distance.dart"
|
||||
[class]{}-[func]{editDistanceDPComp}
|
||||
```
|
|
@ -31,14 +31,14 @@ comments: true
|
|||
|
||||
查阅字典这个小学生必备技能,实际上就是著名的「二分查找」。从数据结构的角度,我们可以把字典视为一个已排序的「数组」;从算法的角度,我们可以将上述查字典的一系列操作看作是「二分查找」算法。
|
||||
|
||||
**例二:整理扑克**。我们在打斗地主时,每局都需要整理扑克牌,使其从小到大排列,实现流程如下:
|
||||
**例二:整理扑克**。我们在打牌时,每局都需要整理扑克牌,使其从小到大排列,实现流程如下:
|
||||
|
||||
1. 将扑克牌划分为“有序”和“无序”两部分,并假设初始状态下最左 1 张扑克牌已经有序。
|
||||
2. 在无序区间抽出一张扑克牌,插入至有序区间的正确位置;完成后最左 2 张扑克已经有序。
|
||||
3. 在无序区间抽出一张扑克牌,插入至有序区间的正确位置;完成后最左 3 张扑克已经有序。
|
||||
4. 不断循环以上操作,直至所有扑克牌都有序后终止。
|
||||
|
||||
以上整理扑克牌的方法本质上就是「插入排序」,它在处理小型数据集时非常高效,因此插入排序常作为编程语言的排序库函数的重要组成部分。
|
||||
以上整理扑克牌的方法本质上就是「插入排序」算法,它在处理小型数据集时非常高效。许多编程语言的排序库函数中都存在插入排序的身影。
|
||||
|
||||
![扑克排序步骤](algorithms_are_everywhere.assets/playing_cards_sorting.png)
|
||||
|
||||
|
|
Loading…
Reference in a new issue