hello-algo/docs/chapter_computational_complexity/time_complexity.md

1632 lines
40 KiB
Markdown
Raw Normal View History

# 时间复杂度
2022-11-22 17:47:26 +08:00
## 统计算法运行时间
2022-11-22 17:47:26 +08:00
运行时间能够直观且准确地体现出算法的效率水平。如果我们想要 **准确预估一段代码的运行时间** ,该如何做呢?
1. 首先需要 **确定运行平台** ,包括硬件配置、编程语言、系统环境等,这些都会影响到代码的运行效率。
2. 评估 **各种计算操作的所需运行时间** ,例如加法操作 `+` 需要 1 ns ,乘法操作 `*` 需要 10 ns ,打印操作需要 5 ns 等。
3. 根据代码 **统计所有计算操作的数量** ,并将所有操作的执行时间求和,即可得到运行时间。
例如以下代码,输入数据大小为 $n$ ,根据以上方法,可以得到算法运行时间为 $6n + 12$ ns 。
$$
1 + 1 + 10 + (1 + 5) \times n = 6n + 12
2022-11-22 17:47:26 +08:00
$$
=== "Java"
```java title=""
// 在某运行平台下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for (int i = 0; i < n; i++) { // 1 ns 每轮都要执行 i++
System.out.println(0); // 5 ns
}
}
```
=== "C++"
```cpp title=""
// 在某运行平台下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for (int i = 0; i < n; i++) { // 1 ns 每轮都要执行 i++
cout << 0 << endl; // 5 ns
}
}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title=""
# 在某运行平台下
def algorithm(n):
a = 2 # 1 ns
a = a + 1 # 1 ns
a = a * 2 # 10 ns
# 循环 n 次
for _ in range(n): # 1 ns
print(0) # 5 ns
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title=""
2022-12-13 09:24:59 +08:00
// 在某运行平台下
func algorithm(n int) {
a := 2 // 1 ns
a = a + 1 // 1 ns
a = a * 2 // 10 ns
// 循环 n 次
for i := 0; i < n; i++ { // 1 ns
fmt.Println(a) // 5 ns
}
}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title=""
// 在某运行平台下
function algorithm(n) {
var a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for(let i = 0; i < n; i++) { // 1 ns 每轮都要执行 i++
console.log(0); // 5 ns
}
}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title=""
// 在某运行平台下
function algorithm(n: number): void {
var a: number = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for(let i = 0; i < n; i++) { // 1 ns 每轮都要执行 i++
console.log(0); // 5 ns
}
}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title=""
// 在某运行平台下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for (int i = 0; i < n; i++) { // 1 ns 每轮都要执行 i++
printf("%d", 0); // 5 ns
}
}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title=""
2022-12-23 15:42:02 +08:00
// 在某运行平台下
void algorithm(int n)
{
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
2022-12-24 17:05:58 +08:00
// 循环 n 次
2022-12-23 15:42:02 +08:00
for (int i = 0; i < n; i++)
{ // 1 ns ,每轮都要执行 i++
Console.WriteLine(0); // 5 ns
}
}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title=""
// 在某运行平台下
func algorithm(_ n: Int) {
var a = 2 // 1 ns
a = a + 1 // 1 ns
a = a * 2 // 10 ns
// 循环 n 次
for _ in 0 ..< n { // 1 ns
print(0) // 5 ns
}
}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title=""
```
但实际上, **统计算法的运行时间既不合理也不现实**。首先,我们不希望预估时间和运行平台绑定,毕竟算法需要跑在各式各样的平台之上。其次,我们很难获知每一种操作的运行时间,这为预估过程带来了极大的难度。
2022-11-22 17:47:26 +08:00
## 统计时间增长趋势
2022-11-22 17:47:26 +08:00
「时间复杂度分析」采取了不同的做法,其统计的不是算法运行时间,而是 **算法运行时间随着数据量变大时的增长趋势**
“时间增长趋势”这个概念比较抽象,我们借助一个例子来理解。设输入数据大小为 $n$ ,给定三个算法 `A` , `B` , `C`
2022-11-22 17:47:26 +08:00
- 算法 `A` 只有 $1$ 个打印操作,算法运行时间不随着 $n$ 增大而增长。我们称此算法的时间复杂度为「常数阶」。
- 算法 `B` 中的打印操作需要循环 $n$ 次,算法运行时间随着 $n$ 增大成线性增长。此算法的时间复杂度被称为「线性阶」。
- 算法 `C` 中的打印操作需要循环 $1000000$ 次,但运行时间仍与输入数据大小 $n$ 无关。因此 `C` 的时间复杂度和 `A` 相同,仍为「常数阶」。
=== "Java"
```java title=""
// 算法 A 时间复杂度:常数阶
void algorithm_A(int n) {
System.out.println(0);
}
// 算法 B 时间复杂度:线性阶
void algorithm_B(int n) {
for (int i = 0; i < n; i++) {
System.out.println(0);
}
}
// 算法 C 时间复杂度:常数阶
void algorithm_C(int n) {
for (int i = 0; i < 1000000; i++) {
System.out.println(0);
}
}
```
=== "C++"
```cpp title=""
// 算法 A 时间复杂度:常数阶
void algorithm_A(int n) {
cout << 0 << endl;
}
// 算法 B 时间复杂度:线性阶
void algorithm_B(int n) {
for (int i = 0; i < n; i++) {
cout << 0 << endl;
}
}
// 算法 C 时间复杂度:常数阶
void algorithm_C(int n) {
for (int i = 0; i < 1000000; i++) {
cout << 0 << endl;
}
}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title=""
# 算法 A 时间复杂度:常数阶
def algorithm_A(n):
print(0)
# 算法 B 时间复杂度:线性阶
def algorithm_B(n):
for _ in range(n):
print(0)
# 算法 C 时间复杂度:常数阶
def algorithm_C(n):
for _ in range(1000000):
print(0)
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title=""
2022-12-13 09:24:59 +08:00
// 算法 A 时间复杂度:常数阶
func algorithm_A(n int) {
fmt.Println(0)
}
// 算法 B 时间复杂度:线性阶
func algorithm_B(n int) {
for i := 0; i < n; i++ {
fmt.Println(0)
}
}
// 算法 C 时间复杂度:常数阶
func algorithm_C(n int) {
for i := 0; i < 1000000; i++ {
fmt.Println(0)
}
}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title=""
// 算法 A 时间复杂度:常数阶
function algorithm_A(n) {
console.log(0);
}
// 算法 B 时间复杂度:线性阶
function algorithm_B(n) {
for (let i = 0; i < n; i++) {
console.log(0);
}
}
// 算法 C 时间复杂度:常数阶
function algorithm_C(n) {
for (let i = 0; i < 1000000; i++) {
console.log(0);
}
}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title=""
// 算法 A 时间复杂度:常数阶
function algorithm_A(n: number): void {
console.log(0);
}
// 算法 B 时间复杂度:线性阶
function algorithm_B(n: number): void {
for (let i = 0; i < n; i++) {
console.log(0);
}
}
// 算法 C 时间复杂度:常数阶
function algorithm_C(n: number): void {
for (let i = 0; i < 1000000; i++) {
console.log(0);
}
}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title=""
// 算法 A 时间复杂度:常数阶
void algorithm_A(int n) {
printf("%d", 0);
}
// 算法 B 时间复杂度:线性阶
void algorithm_B(int n) {
for (int i = 0; i < n; i++) {
printf("%d", 0);
}
}
// 算法 C 时间复杂度:常数阶
void algorithm_C(int n) {
for (int i = 0; i < 1000000; i++) {
printf("%d", 0);
}
}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title=""
2022-12-23 15:42:02 +08:00
// 算法 A 时间复杂度:常数阶
void algorithm_A(int n)
{
Console.WriteLine(0);
}
// 算法 B 时间复杂度:线性阶
void algorithm_B(int n)
{
for (int i = 0; i < n; i++)
{
Console.WriteLine(0);
}
}
// 算法 C 时间复杂度:常数阶
void algorithm_C(int n)
{
for (int i = 0; i < 1000000; i++)
{
Console.WriteLine(0);
}
}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title=""
// 算法 A 时间复杂度:常数阶
func algorithmA(_ n: Int) {
print(0)
}
// 算法 B 时间复杂度:线性阶
func algorithmB(_ n: Int) {
for _ in 0 ..< n {
print(0)
}
}
// 算法 C 时间复杂度:常数阶
func algorithmC(_ n: Int) {
for _ in 0 ..< 1000000 {
print(0)
}
}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title=""
```
![算法 A, B, C 的时间增长趋势](time_complexity.assets/time_complexity_simple_example.png)
2022-11-22 17:47:26 +08:00
相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足?
**时间复杂度可以有效评估算法效率**。算法 `B` 运行时间的增长是线性的,在 $n > 1$ 时慢于算法 `A` ,在 $n > 1000000$ 时慢于算法 `C` 。实质上,只要输入数据大小 $n$ 足够大,复杂度为「常数阶」的算法一定优于「线性阶」的算法,这也正是时间增长趋势的含义。
2022-11-22 17:47:26 +08:00
**时间复杂度的推算方法更加简便**。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计「计算操作的数量」,这是因为,无论是运行平台还是计算操作类型,都与算法运行时间的增长趋势无关。因而,我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”,这样的简化做法大大降低了估算难度。
2022-11-22 17:47:26 +08:00
**时间复杂度也存在一定的局限性**。比如,虽然算法 `A``C` 的时间复杂度相同,但是实际的运行时间有非常大的差别。再比如,虽然算法 `B``C` 的时间复杂度要更高,但在输入数据大小 $n$ 比较小时,算法 `B` 是要明显优于算法 `C` 的。对于以上情况,我们很难仅凭时间复杂度来判定算法效率高低。然而,即使存在这些问题,复杂度分析仍然是评判算法效率的最有效且常用的方法。
2022-11-22 17:47:26 +08:00
## 函数渐近上界
2022-11-22 17:47:26 +08:00
设算法「计算操作数量」为 $T(n)$ ,其是一个关于输入数据大小 $n$ 的函数。例如,以下算法的操作数量为
2022-11-22 17:47:26 +08:00
$$
T(n) = 3 + 2n
$$
2022-11-22 17:47:26 +08:00
=== "Java"
```java title=""
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for (int i = 0; i < n; i++) { // +1每轮都执行 i ++
System.out.println(0); // +1
}
}
```
=== "C++"
```cpp title=""
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for (int i = 0; i < n; i++) { // +1每轮都执行 i ++
cout << 0 << endl; // +1
}
}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title=""
def algorithm(n):
a = 1 # +1
a = a + 1 # +1
a = a * 2 # +1
# 循环 n 次
for i in range(n): # +1
print(0) # +1
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title=""
2022-12-13 09:24:59 +08:00
func algorithm(n int) {
2023-01-08 19:41:05 +08:00
a := 1 // +1
a = a + 1 // +1
a = a * 2 // +1
2022-12-13 09:24:59 +08:00
// 循环 n 次
2023-01-08 19:41:05 +08:00
for i := 0; i < n; i++ { // +1
fmt.Println(a) // +1
}
2022-12-13 09:24:59 +08:00
}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title=""
2023-01-02 18:57:26 +08:00
function algorithm(n){
var a = 1; // +1
a += 1; // +1
a *= 2; // +1
// 循环 n 次
for(let i = 0; i < n; i++){ // +1每轮都执行 i ++
2023-01-02 20:40:01 +08:00
console.log(0); // +1
2023-01-02 18:57:26 +08:00
}
2022-12-03 01:31:29 +08:00
2023-01-02 18:57:26 +08:00
}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title=""
2023-01-02 18:57:26 +08:00
function algorithm(n: number): void{
var a: number = 1; // +1
a += 1; // +1
a *= 2; // +1
// 循环 n 次
for(let i = 0; i < n; i++){ // +1每轮都执行 i ++
2023-01-02 20:40:01 +08:00
console.log(0); // +1
2023-01-02 18:57:26 +08:00
}
2022-12-03 01:31:29 +08:00
2023-01-02 18:57:26 +08:00
}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title=""
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for (int i = 0; i < n; i++) { // +1每轮都执行 i ++
printf("%d", 0); // +1
}
}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title=""
2022-12-23 15:42:02 +08:00
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for (int i = 0; i < n; i++) { // +1每轮都执行 i ++
2022-12-24 17:05:58 +08:00
Console.WriteLine(0); // +1
2022-12-23 15:42:02 +08:00
}
}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title=""
func algorithm(n: Int) {
var a = 1 // +1
a = a + 1 // +1
a = a * 2 // +1
// 循环 n 次
for _ in 0 ..< n { // +1
print(0) // +1
}
}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title=""
```
2022-11-22 17:47:26 +08:00
$T(n)$ 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。
我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号被称为「大 $O$ 记号 Big-$O$ Notation」代表函数 $T(n)$ 的「渐近上界 asymptotic upper bound」。
2022-11-22 17:47:26 +08:00
我们要推算时间复杂度,本质上是在计算「操作数量函数 $T(n)$ 」的渐近上界。下面我们先来看看函数渐近上界的数学定义。
2022-11-22 17:47:26 +08:00
!!! abstract "函数渐近上界"
2022-11-22 17:47:26 +08:00
若存在正实数 $c$ 和实数 $n_0$ ,使得对于所有的 $n > n_0$ ,均有
$$
T(n) \leq c \cdot f(n)
$$
则可认为 $f(n)$ 给出了 $T(n)$ 的一个渐近上界,记为
2022-11-22 17:47:26 +08:00
$$
T(n) = O(f(n))
$$
![函数的渐近上界](time_complexity.assets/asymptotic_upper_bound.png)
2022-11-22 17:47:26 +08:00
本质上看,计算渐近上界就是在找一个函数 $f(n)$ **使得在 $n$ 趋向于无穷大时,$T(n)$ 和 $f(n)$ 处于相同的增长级别(仅相差一个常数项 $c$ 的倍数)**。
2022-11-22 17:47:26 +08:00
!!! tip
渐近上界的数学味儿有点重,如果你感觉没有完全理解,无需担心,因为在实际使用中我们只需要会推算即可,数学意义可以慢慢领悟。
2022-11-22 17:47:26 +08:00
## 推算方法
2022-11-22 17:47:26 +08:00
推算出 $f(n)$ 后,我们就得到时间复杂度 $O(f(n))$ 。那么,如何来确定渐近上界 $f(n)$ 呢?总体分为两步,首先「统计操作数量」,然后「判断渐近上界」。
2022-11-22 17:47:26 +08:00
2023-01-31 03:37:50 +08:00
### 1) 统计操作数量
2022-11-22 17:47:26 +08:00
对着代码,从上到下一行一行地计数即可。然而,**由于上述 $c \cdot f(n)$ 中的常数项 $c$ 可以取任意大小,因此操作数量 $T(n)$ 中的各种系数、常数项都可以被忽略**。根据此原则,可以总结出以下计数偷懒技巧:
1. **跳过数量与 $n$ 无关的操作**。因为他们都是 $T(n)$ 中的常数项,对时间复杂度不产生影响。
2. **省略所有系数**。例如,循环 $2n$ 次、$5n + 1$ 次、……,都可以化简记为 $n$ 次,因为 $n$ 前面的系数对时间复杂度也不产生影响。
3. **循环嵌套时使用乘法**。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用上述 `1.``2.` 技巧。
2022-11-22 17:47:26 +08:00
以下示例展示了使用上述技巧前、后的统计结果。
2022-11-22 17:47:26 +08:00
$$
\begin{aligned}
T(n) & = 2n(n + 1) + (5n + 1) + 2 & \text{完整统计 (-.-|||)} \newline
& = 2n^2 + 7n + 3 \newline
T(n) & = n^2 + n & \text{偷懒统计 (o.O)}
\end{aligned}
$$
2022-11-22 17:47:26 +08:00
最终,两者都能推出相同的时间复杂度结果,即 $O(n^2)$ 。
=== "Java"
```java title=""
void algorithm(int n) {
int a = 1; // +0技巧 1
a = a + n; // +0技巧 1
// +n技巧 2
for (int i = 0; i < 5 * n + 1; i++) {
System.out.println(0);
}
// +n*n技巧 3
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
System.out.println(0);
}
}
}
```
=== "C++"
```cpp title=""
void algorithm(int n) {
int a = 1; // +0技巧 1
a = a + n; // +0技巧 1
// +n技巧 2
for (int i = 0; i < 5 * n + 1; i++) {
cout << 0 << endl;
}
// +n*n技巧 3
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
cout << 0 << endl;
}
}
}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title=""
def algorithm(n):
a = 1 # +0技巧 1
a = a + n # +0技巧 1
# +n技巧 2
for i in range(5 * n + 1):
print(0)
# +n*n技巧 3
for i in range(2 * n):
for j in range(n + 1):
print(0)
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title=""
2022-12-13 09:24:59 +08:00
func algorithm(n int) {
a := 1 // +0技巧 1
a = a + n // +0技巧 1
// +n技巧 2
for i := 0; i < 5 * n + 1; i++ {
fmt.Println(0)
}
// +n*n技巧 3
for i := 0; i < 2 * n; i++ {
for j := 0; j < n + 1; j++ {
fmt.Println(0)
}
}
}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title=""
2023-01-02 18:57:26 +08:00
function algorithm(n) {
let a = 1; // +0技巧 1
2023-01-02 18:57:26 +08:00
a = a + n; // +0技巧 1
// +n技巧 2
for (let i = 0; i < 5 * n + 1; i++) {
2023-01-02 18:57:26 +08:00
console.log(0);
}
// +n*n技巧 3
for (let i = 0; i < 2 * n; i++) {
for (let j = 0; j < n + 1; j++) {
2023-01-02 18:57:26 +08:00
console.log(0);
}
}
}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title=""
2023-01-02 18:57:26 +08:00
function algorithm(n: number): void {
let a = 1; // +0技巧 1
2023-01-02 18:57:26 +08:00
a = a + n; // +0技巧 1
// +n技巧 2
for (let i = 0; i < 5 * n + 1; i++) {
2023-01-02 18:57:26 +08:00
console.log(0);
}
// +n*n技巧 3
for (let i = 0; i < 2 * n; i++) {
for (let j = 0; j < n + 1; j++) {
2023-01-02 18:57:26 +08:00
console.log(0);
}
}
}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title=""
void algorithm(int n) {
int a = 1; // +0技巧 1
a = a + n; // +0技巧 1
// +n技巧 2
for (int i = 0; i < 5 * n + 1; i++) {
printf("%d", 0);
}
// +n*n技巧 3
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
printf("%d", 0);
}
}
}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title=""
2022-12-23 15:42:02 +08:00
void algorithm(int n)
{
int a = 1; // +0技巧 1
a = a + n; // +0技巧 1
2022-12-24 17:05:58 +08:00
// +n技巧 2
2022-12-23 15:42:02 +08:00
for (int i = 0; i < 5 * n + 1; i++)
{
Console.WriteLine(0);
}
// +n*n技巧 3
for (int i = 0; i < 2 * n; i++)
{
for (int j = 0; j < n + 1; j++)
{
Console.WriteLine(0);
}
}
}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title=""
func algorithm(n: Int) {
var a = 1 // +0技巧 1
a = a + n // +0技巧 1
// +n技巧 2
for _ in 0 ..< (5 * n + 1) {
print(0)
}
// +n*n技巧 3
for _ in 0 ..< (2 * n) {
for _ in 0 ..< (n + 1) {
print(0)
}
}
}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title=""
```
2023-01-31 03:37:50 +08:00
### 2) 判断渐近上界
2022-11-22 17:47:26 +08:00
**时间复杂度由多项式 $T(n)$ 中最高阶的项来决定**。这是因为在 $n$ 趋于无穷大时,最高阶的项将处于主导作用,其它项的影响都可以被忽略。
以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调 **系数无法撼动阶数** 这一结论。在 $n$ 趋于无穷大时,这些常数都是“浮云”。
2022-11-22 17:47:26 +08:00
<div class="center-table" markdown>
| 操作数量 $T(n)$ | 时间复杂度 $O(f(n))$ |
| ---------------------- | -------------------- |
| $100000$ | $O(1)$ |
| $3n + 2$ | $O(n)$ |
| $2n^2 + 3n + 2$ | $O(n^2)$ |
| $n^3 + 10000n^2$ | $O(n^3)$ |
| $2^n + 10000n^{10000}$ | $O(2^n)$ |
</div>
## 常见类型
2022-11-22 17:47:26 +08:00
设输入数据大小为 $n$ ,常见的时间复杂度类型有(从低到高排列)
$$
\begin{aligned}
O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!) \newline
\text{常数阶} < \text{对数阶} < \text{线性阶} < \text{线性对数阶} < \text{平方阶} < \text{指数阶} < \text{阶乘阶}
\end{aligned}
$$
![时间复杂度的常见类型](time_complexity.assets/time_complexity_common_types.png)
2022-11-22 17:47:26 +08:00
!!! tip
部分示例代码需要一些前置知识,包括数组、递归算法等。如果遇到看不懂的地方无需担心,可以在学习完后面章节后再来复习,现阶段先聚焦在理解时间复杂度含义和推算方法上。
### 常数阶 $O(1)$
常数阶的操作数量与输入数据大小 $n$ 无关,即不随着 $n$ 的变化而变化。
对于以下算法,无论操作数量 `size` 有多大,只要与数据大小 $n$ 无关,时间复杂度就仍为 $O(1)$ 。
=== "Java"
```java title="time_complexity.java"
[class]{time_complexity}-[func]{constant}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="time_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{constant}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="time_complexity.py"
[class]{}-[func]{constant}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="time_complexity.go"
[class]{}-[func]{constant}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="time_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{constant}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="time_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{constant}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="time_complexity.c"
[class]{}-[func]{constant}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="time_complexity.cs"
[class]{time_complexity}-[func]{constant}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="time_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{constant}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="time_complexity.zig"
[class]{}-[func]{constant}
2023-02-01 22:03:04 +08:00
```
2022-11-22 17:47:26 +08:00
### 线性阶 $O(n)$
线性阶的操作数量相对输入数据大小成线性级别增长。线性阶常出现于单层循环。
=== "Java"
```java title="time_complexity.java"
[class]{time_complexity}-[func]{linear}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="time_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{linear}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="time_complexity.py"
[class]{}-[func]{linear}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="time_complexity.go"
[class]{}-[func]{linear}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="time_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{linear}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="time_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{linear}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="time_complexity.c"
[class]{}-[func]{linear}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="time_complexity.cs"
[class]{time_complexity}-[func]{linear}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="time_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{linear}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="time_complexity.zig"
[class]{}-[func]{linear}
2023-02-01 22:03:04 +08:00
```
2022-11-22 17:47:26 +08:00
「遍历数组」和「遍历链表」等操作,时间复杂度都为 $O(n)$ ,其中 $n$ 为数组或链表的长度。
!!! tip
**数据大小 $n$ 是根据输入数据的类型来确定的**。比如,在上述示例中,我们直接将 $n$ 看作输入数据大小;以下遍历数组示例中,数据大小 $n$ 为数组的长度。
2022-11-22 17:47:26 +08:00
=== "Java"
```java title="time_complexity.java"
[class]{time_complexity}-[func]{arrayTraversal}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="time_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{arrayTraversal}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="time_complexity.py"
[class]{}-[func]{array_traversal}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="time_complexity.go"
[class]{}-[func]{arrayTraversal}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="time_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{arrayTraversal}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="time_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{arrayTraversal}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="time_complexity.c"
[class]{}-[func]{arrayTraversal}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="time_complexity.cs"
[class]{time_complexity}-[func]{arrayTraversal}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="time_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{arrayTraversal}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="time_complexity.zig"
[class]{}-[func]{arrayTraversal}
2023-02-01 22:03:04 +08:00
```
2022-11-22 17:47:26 +08:00
### 平方阶 $O(n^2)$
平方阶的操作数量相对输入数据大小成平方级别增长。平方阶常出现于嵌套循环,外层循环和内层循环都为 $O(n)$ ,总体为 $O(n^2)$ 。
=== "Java"
```java title="time_complexity.java"
[class]{time_complexity}-[func]{quadratic}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="time_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{quadratic}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="time_complexity.py"
[class]{}-[func]{quadratic}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="time_complexity.go"
[class]{}-[func]{quadratic}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="time_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{quadratic}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="time_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{quadratic}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="time_complexity.c"
[class]{}-[func]{quadratic}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="time_complexity.cs"
[class]{time_complexity}-[func]{quadratic}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="time_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{quadratic}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="time_complexity.zig"
[class]{}-[func]{quadratic}
2023-02-01 22:03:04 +08:00
```
![常数阶、线性阶、平方阶的时间复杂度](time_complexity.assets/time_complexity_constant_linear_quadratic.png)
2022-11-22 17:47:26 +08:00
以「冒泡排序」为例,外层循环 $n - 1$ 次,内层循环 $n-1, n-2, \cdots, 2, 1$ 次,平均为 $\frac{n}{2}$ 次,因此时间复杂度为 $O(n^2)$ 。
$$
O((n - 1) \frac{n}{2}) = O(n^2)
$$
=== "Java"
```java title="time_complexity.java"
[class]{time_complexity}-[func]{bubbleSort}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="time_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{bubbleSort}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="time_complexity.py"
[class]{}-[func]{bubble_sort}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="time_complexity.go"
[class]{}-[func]{bubbleSort}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="time_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{bubbleSort}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="time_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{bubbleSort}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="time_complexity.c"
[class]{}-[func]{bubbleSort}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="time_complexity.cs"
[class]{time_complexity}-[func]{bubbleSort}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="time_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{bubbleSort}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="time_complexity.zig"
[class]{}-[func]{bubbleSort}
2023-02-01 22:03:04 +08:00
```
2022-11-22 17:47:26 +08:00
### 指数阶 $O(2^n)$
!!! note
生物学科中的“细胞分裂”即是指数阶增长:初始状态为 $1$ 个细胞,分裂一轮后为 $2$ 个,分裂两轮后为 $4$ 个,……,分裂 $n$ 轮后有 $2^n$ 个细胞。
2022-11-22 17:47:26 +08:00
2022-12-03 01:58:23 +08:00
指数阶增长得非常快,在实际应用中一般是不能被接受的。若一个问题使用「暴力枚举」求解的时间复杂度是 $O(2^n)$ ,那么一般都需要使用「动态规划」或「贪心算法」等算法来求解。
2022-11-22 17:47:26 +08:00
=== "Java"
```java title="time_complexity.java"
[class]{time_complexity}-[func]{exponential}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="time_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{exponential}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="time_complexity.py"
[class]{}-[func]{exponential}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="time_complexity.go"
[class]{}-[func]{exponential}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="time_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{exponential}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="time_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{exponential}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="time_complexity.c"
[class]{}-[func]{exponential}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="time_complexity.cs"
[class]{time_complexity}-[func]{exponential}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="time_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{exponential}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="time_complexity.zig"
[class]{}-[func]{exponential}
2023-02-01 22:03:04 +08:00
```
![指数阶的时间复杂度](time_complexity.assets/time_complexity_exponential.png)
2022-11-22 17:47:26 +08:00
在实际算法中,指数阶常出现于递归函数。例如以下代码,不断地一分为二,分裂 $n$ 次后停止。
=== "Java"
```java title="time_complexity.java"
[class]{time_complexity}-[func]{expRecur}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="time_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{expRecur}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="time_complexity.py"
[class]{}-[func]{exp_recur}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="time_complexity.go"
[class]{}-[func]{expRecur}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="time_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{expRecur}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="time_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{expRecur}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="time_complexity.c"
[class]{}-[func]{expRecur}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="time_complexity.cs"
[class]{time_complexity}-[func]{expRecur}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="time_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{expRecur}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="time_complexity.zig"
[class]{}-[func]{expRecur}
2023-02-01 22:03:04 +08:00
```
2022-11-22 17:47:26 +08:00
### 对数阶 $O(\log n)$
2022-12-30 18:37:12 +08:00
对数阶与指数阶正好相反,后者反映“每轮增加到两倍的情况”,而前者反映“每轮缩减到一半的情况”。对数阶仅次于常数阶,时间增长得很慢,是理想的时间复杂度。
2022-11-22 17:47:26 +08:00
对数阶常出现于「二分查找」和「分治算法」中,体现“一分为多”、“化繁为简”的算法思想。
2022-11-22 17:47:26 +08:00
设输入数据大小为 $n$ ,由于每轮缩减到一半,因此循环次数是 $\log_2 n$ ,即 $2^n$ 的反函数。
=== "Java"
```java title="time_complexity.java"
[class]{time_complexity}-[func]{logarithmic}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="time_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{logarithmic}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="time_complexity.py"
[class]{}-[func]{logarithmic}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="time_complexity.go"
[class]{}-[func]{logarithmic}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="time_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{logarithmic}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="time_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{logarithmic}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="time_complexity.c"
[class]{}-[func]{logarithmic}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="time_complexity.cs"
[class]{time_complexity}-[func]{logarithmic}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="time_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{logarithmic}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="time_complexity.zig"
[class]{}-[func]{logarithmic}
2023-02-01 22:03:04 +08:00
```
![对数阶的时间复杂度](time_complexity.assets/time_complexity_logarithmic.png)
2022-11-22 17:47:26 +08:00
与指数阶类似,对数阶也常出现于递归函数。以下代码形成了一个高度为 $\log_2 n$ 的递归树。
=== "Java"
```java title="time_complexity.java"
[class]{time_complexity}-[func]{logRecur}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="time_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{logRecur}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="time_complexity.py"
[class]{}-[func]{log_recur}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="time_complexity.go"
[class]{}-[func]{logRecur}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="time_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{logRecur}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="time_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{logRecur}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="time_complexity.c"
[class]{}-[func]{logRecur}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="time_complexity.cs"
[class]{time_complexity}-[func]{logRecur}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="time_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{logRecur}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="time_complexity.zig"
[class]{}-[func]{logRecur}
2023-02-01 22:03:04 +08:00
```
2022-11-22 17:47:26 +08:00
### 线性对数阶 $O(n \log n)$
线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 $O(\log n)$ 和 $O(n)$ 。
主流排序算法的时间复杂度都是 $O(n \log n )$ ,例如快速排序、归并排序、堆排序等。
=== "Java"
```java title="time_complexity.java"
[class]{time_complexity}-[func]{linearLogRecur}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="time_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{linearLogRecur}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="time_complexity.py"
[class]{}-[func]{linear_log_recur}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="time_complexity.go"
[class]{}-[func]{linearLogRecur}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="time_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{linearLogRecur}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="time_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{linearLogRecur}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="time_complexity.c"
[class]{}-[func]{linearLogRecur}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="time_complexity.cs"
[class]{time_complexity}-[func]{linearLogRecur}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="time_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{linearLogRecur}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="time_complexity.zig"
[class]{}-[func]{linearLogRecur}
2023-02-01 22:03:04 +08:00
```
![线性对数阶的时间复杂度](time_complexity.assets/time_complexity_logarithmic_linear.png)
2022-11-22 17:47:26 +08:00
### 阶乘阶 $O(n!)$
阶乘阶对应数学上的「全排列」。即给定 $n$ 个互不重复的元素,求其所有可能的排列方案,则方案数量为
$$
n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1
$$
阶乘常使用递归实现。例如以下代码,第一层分裂出 $n$ 个,第二层分裂出 $n - 1$ 个,…… ,直至到第 $n$ 层时终止分裂。
=== "Java"
```java title="time_complexity.java"
[class]{time_complexity}-[func]{factorialRecur}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="time_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{factorialRecur}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="time_complexity.py"
[class]{}-[func]{factorial_recur}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="time_complexity.go"
[class]{}-[func]{factorialRecur}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="time_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{factorialRecur}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="time_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{factorialRecur}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="time_complexity.c"
[class]{}-[func]{factorialRecur}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="time_complexity.cs"
[class]{time_complexity}-[func]{factorialRecur}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="time_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{factorialRecur}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="time_complexity.zig"
[class]{}-[func]{factorialRecur}
2023-02-01 22:03:04 +08:00
```
![阶乘阶的时间复杂度](time_complexity.assets/time_complexity_factorial.png)
2022-11-22 17:47:26 +08:00
## 最差、最佳、平均时间复杂度
2022-11-22 17:47:26 +08:00
**某些算法的时间复杂度不是恒定的,而是与输入数据的分布有关**。举一个例子,输入一个长度为 $n$ 数组 `nums` ,其中 `nums` 由从 $1$ 至 $n$ 的数字组成,但元素顺序是随机打乱的;算法的任务是返回元素 $1$ 的索引。我们可以得出以下结论:
2022-11-22 17:47:26 +08:00
-`nums = [?, ?, ..., 1]`,即当末尾元素是 $1$ 时,则需完整遍历数组,此时达到 **最差时间复杂度 $O(n)$**
-`nums = [1, ?, ?, ...]` ,即当首个数字为 $1$ 时,无论数组多长都不需要继续遍历,此时达到 **最佳时间复杂度 $\Omega(1)$**
「函数渐近上界」使用大 $O$ 记号表示,代表「最差时间复杂度」。与之对应,「函数渐近下界」用 $\Omega$ 记号Omega Notation来表示代表「最佳时间复杂度」。
2022-11-22 17:47:26 +08:00
=== "Java"
2022-12-03 01:31:29 +08:00
```java title="worst_best_time_complexity.java"
[class]{worst_best_time_complexity}-[func]{randomNumbers}
[class]{worst_best_time_complexity}-[func]{findOne}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="worst_best_time_complexity.cpp"
2023-02-28 00:14:59 +08:00
[class]{}-[func]{randomNumbers}
2023-02-28 00:14:59 +08:00
[class]{}-[func]{findOne}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="worst_best_time_complexity.py"
[class]{}-[func]{random_numbers}
[class]{}-[func]{find_one}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="worst_best_time_complexity.go"
2023-02-28 00:14:59 +08:00
[class]{}-[func]{randomNumbers}
2022-12-03 01:31:29 +08:00
2023-02-28 00:14:59 +08:00
[class]{}-[func]{findOne}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="worst_best_time_complexity.js"
2023-02-28 00:14:59 +08:00
[class]{}-[func]{randomNumbers}
2022-12-03 01:31:29 +08:00
2023-02-28 00:14:59 +08:00
[class]{}-[func]{findOne}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="worst_best_time_complexity.ts"
2023-02-28 00:14:59 +08:00
[class]{}-[func]{randomNumbers}
2022-12-03 01:31:29 +08:00
2023-02-28 00:14:59 +08:00
[class]{}-[func]{findOne}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="worst_best_time_complexity.c"
2023-02-28 00:14:59 +08:00
[class]{}-[func]{randomNumbers}
2023-02-28 00:14:59 +08:00
[class]{}-[func]{findOne}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="worst_best_time_complexity.cs"
[class]{worst_best_time_complexity}-[func]{randomNumbers}
2022-12-23 15:42:02 +08:00
[class]{worst_best_time_complexity}-[func]{findOne}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
2023-01-08 19:41:05 +08:00
```swift title="worst_best_time_complexity.swift"
2023-02-28 00:14:59 +08:00
[class]{}-[func]{randomNumbers}
2023-02-28 00:14:59 +08:00
[class]{}-[func]{findOne}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="worst_best_time_complexity.zig"
// 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱
pub fn randomNumbers(comptime n: usize) [n]i32 {
var nums: [n]i32 = undefined;
// 生成数组 nums = { 1, 2, 3, ..., n }
for (nums) |*num, i| {
num.* = @intCast(i32, i) + 1;
}
// 随机打乱数组元素
const rand = std.crypto.random;
rand.shuffle(i32, &nums);
return nums;
}
2023-02-01 22:03:04 +08:00
// 查找数组 nums 中数字 1 所在索引
pub fn findOne(nums: []i32) i32 {
for (nums) |num, i| {
// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
if (num == 1) return @intCast(i32, i);
}
return -1;
}
2023-02-01 22:03:04 +08:00
```
2022-11-22 17:47:26 +08:00
!!! tip
我们在实际应用中很少使用「最佳时间复杂度」,因为往往只有很小概率下才能达到,会带来一定的误导性。反之,「最差时间复杂度」最为实用,因为它给出了一个“效率安全值”,让我们可以放心地使用算法。
2022-11-22 17:47:26 +08:00
从上述示例可以看出,最差或最佳时间复杂度只出现在“特殊分布的数据”中,这些情况的出现概率往往很小,因此并不能最真实地反映算法运行效率。**相对地,「平均时间复杂度」可以体现算法在随机输入数据下的运行效率,用 $\Theta$ 记号Theta Notation来表示**。
2022-11-22 17:47:26 +08:00
对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 $1$ 出现在任意索引的概率都是相等的,那么算法的平均循环次数则是数组长度的一半 $\frac{n}{2}$ ,平均时间复杂度为 $\Theta(\frac{n}{2}) = \Theta(n)$ 。
但在实际应用中,尤其是较为复杂的算法,计算平均时间复杂度比较困难,因为很难简便地分析出在数据分布下的整体数学期望。这种情况下,我们一般使用最差时间复杂度来作为算法效率的评判标准。
2022-11-23 03:56:25 +08:00
!!! question "为什么很少看到 $\Theta$ 符号?"
实际中我们经常使用「大 $O$ 符号」来表示「平均复杂度」,这样严格意义上来说是不规范的。这可能是因为 $O$ 符号实在是太朗朗上口了。</br>如果在本书和其他资料中看到类似 **平均时间复杂度 $O(n)$** 的表述,请你直接理解为 $\Theta(n)$ 即可。