hello-algo/docs/chapter_tree/binary_tree_traversal.md
krahets b39c2a94d3 Move docs/zh back to docs.
Move docs/overrides to overrides/.
Other fine tunes.
2023-10-08 04:25:06 +08:00

6.4 KiB
Executable file
Raw Blame History

二叉树遍历

从物理结构的角度来看,树是一种基于链表的数据结构,因此其遍历方式是通过指针逐个访问节点。然而,树是一种非线性数据结构,这使得遍历树比遍历链表更加复杂,需要借助搜索算法来实现。

二叉树常见的遍历方式包括层序遍历、前序遍历、中序遍历和后序遍历等。

层序遍历

如下图所示,「层序遍历 level-order traversal」从顶部到底部逐层遍历二叉树并在每一层按照从左到右的顺序访问节点。

层序遍历本质上属于「广度优先遍历 breadth-first traversal」它体现了一种“一圈一圈向外扩展”的逐层遍历方式。

二叉树的层序遍历

代码实现

广度优先遍历通常借助“队列”来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进”的规则,两者背后的思想是一致的。

=== "Python"

```python title="binary_tree_bfs.py"
[class]{}-[func]{level_order}
```

=== "C++"

```cpp title="binary_tree_bfs.cpp"
[class]{}-[func]{levelOrder}
```

=== "Java"

```java title="binary_tree_bfs.java"
[class]{binary_tree_bfs}-[func]{levelOrder}
```

=== "C#"

```csharp title="binary_tree_bfs.cs"
[class]{binary_tree_bfs}-[func]{LevelOrder}
```

=== "Go"

```go title="binary_tree_bfs.go"
[class]{}-[func]{levelOrder}
```

=== "Swift"

```swift title="binary_tree_bfs.swift"
[class]{}-[func]{levelOrder}
```

=== "JS"

```javascript title="binary_tree_bfs.js"
[class]{}-[func]{levelOrder}
```

=== "TS"

```typescript title="binary_tree_bfs.ts"
[class]{}-[func]{levelOrder}
```

=== "Dart"

```dart title="binary_tree_bfs.dart"
[class]{}-[func]{levelOrder}
```

=== "Rust"

```rust title="binary_tree_bfs.rs"
[class]{}-[func]{level_order}
```

=== "C"

```c title="binary_tree_bfs.c"
[class]{}-[func]{levelOrder}
```

=== "Zig"

```zig title="binary_tree_bfs.zig"
[class]{}-[func]{levelOrder}
```

复杂度分析

  • 时间复杂度 $O(n)$ :所有节点被访问一次,使用 O(n) 时间,其中 n 为节点数量。
  • 空间复杂度 $O(n)$ :在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 (n + 1) / 2 个节点,占用 O(n) 空间。

前序、中序、后序遍历

相应地,前序、中序和后序遍历都属于「深度优先遍历 depth-first traversal」它体现了一种“先走到尽头再回溯继续”的遍历方式。

下图展示了对二叉树进行深度优先遍历的工作原理。深度优先遍历就像是绕着整个二叉树的外围“走”一圈,在每个节点都会遇到三个位置,分别对应前序遍历、中序遍历和后序遍历。

二叉搜索树的前、中、后序遍历

代码实现

深度优先搜索通常基于递归实现:

=== "Python"

```python title="binary_tree_dfs.py"
[class]{}-[func]{pre_order}

[class]{}-[func]{in_order}

[class]{}-[func]{post_order}
```

=== "C++"

```cpp title="binary_tree_dfs.cpp"
[class]{}-[func]{preOrder}

[class]{}-[func]{inOrder}

[class]{}-[func]{postOrder}
```

=== "Java"

```java title="binary_tree_dfs.java"
[class]{binary_tree_dfs}-[func]{preOrder}

[class]{binary_tree_dfs}-[func]{inOrder}

[class]{binary_tree_dfs}-[func]{postOrder}
```

=== "C#"

```csharp title="binary_tree_dfs.cs"
[class]{binary_tree_dfs}-[func]{PreOrder}

[class]{binary_tree_dfs}-[func]{InOrder}

[class]{binary_tree_dfs}-[func]{PostOrder}
```

=== "Go"

```go title="binary_tree_dfs.go"
[class]{}-[func]{preOrder}

[class]{}-[func]{inOrder}

[class]{}-[func]{postOrder}
```

=== "Swift"

```swift title="binary_tree_dfs.swift"
[class]{}-[func]{preOrder}

[class]{}-[func]{inOrder}

[class]{}-[func]{postOrder}
```

=== "JS"

```javascript title="binary_tree_dfs.js"
[class]{}-[func]{preOrder}

[class]{}-[func]{inOrder}

[class]{}-[func]{postOrder}
```

=== "TS"

```typescript title="binary_tree_dfs.ts"
[class]{}-[func]{preOrder}

[class]{}-[func]{inOrder}

[class]{}-[func]{postOrder}
```

=== "Dart"

```dart title="binary_tree_dfs.dart"
[class]{}-[func]{preOrder}

[class]{}-[func]{inOrder}

[class]{}-[func]{postOrder}
```

=== "Rust"

```rust title="binary_tree_dfs.rs"
[class]{}-[func]{pre_order}

[class]{}-[func]{in_order}

[class]{}-[func]{post_order}
```

=== "C"

```c title="binary_tree_dfs.c"
[class]{}-[func]{preOrder}

[class]{}-[func]{inOrder}

[class]{}-[func]{postOrder}
```

=== "Zig"

```zig title="binary_tree_dfs.zig"
[class]{}-[func]{preOrder}

[class]{}-[func]{inOrder}

[class]{}-[func]{postOrder}
```

!!! note

深度优先搜索也可以基于迭代实现,有兴趣的同学可以自行研究。

下图展示了前序遍历二叉树的递归过程,其可分为“递”和“归”两个逆向的部分。

  1. “递”表示开启新方法,程序在此过程中访问下一个节点。
  2. “归”表示函数返回,代表当前节点已经访问完毕。

=== "<1>" 前序遍历的递归过程

=== "<2>" preorder_step2

=== "<3>" preorder_step3

=== "<4>" preorder_step4

=== "<5>" preorder_step5

=== "<6>" preorder_step6

=== "<7>" preorder_step7

=== "<8>" preorder_step8

=== "<9>" preorder_step9

=== "<10>" preorder_step10

=== "<11>" preorder_step11

复杂度分析

  • 时间复杂度 $O(n)$ :所有节点被访问一次,使用 O(n) 时间。
  • 空间复杂度 $O(n)$ :在最差情况下,即树退化为链表时,递归深度达到 n ,系统占用 O(n) 栈帧空间。