* remove extra space * Update max_capacity_problem.md * Update algorithms_are_everywhere.md --------- Co-authored-by: Yudong Jin <krahets@163.com>
4.6 KiB
最大容量問題
!!! question
輸入一個陣列 $ht$ ,其中的每個元素代表一個垂直隔板的高度。陣列中的任意兩個隔板,以及它們之間的空間可以組成一個容器。
容器的容量等於高度和寬度的乘積(面積),其中高度由較短的隔板決定,寬度是兩個隔板的陣列索引之差。
請在陣列中選擇兩個隔板,使得組成的容器的容量最大,返回最大容量。示例如下圖所示。
容器由任意兩個隔板圍成,因此本題的狀態為兩個隔板的索引,記為 $[i, j]$ 。
根據題意,容量等於高度乘以寬度,其中高度由短板決定,寬度是兩隔板的陣列索引之差。設容量為 cap[i, j]
,則可得計算公式:
$$
cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
設陣列長度為 n
,兩個隔板的組合數量(狀態總數)為 C_n^2 = \frac{n(n - 1)}{2}
個。最直接地,我們可以窮舉所有狀態,從而求得最大容量,時間複雜度為 O(n^2)
。
貪婪策略確定
這道題還有更高效率的解法。如下圖所示,現選取一個狀態 [i, j]
,其滿足索引 i < j
且高度 ht[i] < ht[j]
,即 i
為短板、j
為長板。
如下圖所示,若此時將長板 j
向短板 i
靠近,則容量一定變小。
這是因為在移動長板 j
後,寬度 j-i
肯定變小;而高度由短板決定,因此高度只可能不變( i
仍為短板)或變小(移動後的 j
成為短板)。
反向思考,我們只有向內收縮短板 i
,才有可能使容量變大。因為雖然寬度一定變小,但高度可能會變大(移動後的短板 i
可能會變長)。例如在下圖中,移動短板後面積變大。
由此便可推出本題的貪婪策略:初始化兩指標,使其分列容器兩端,每輪向內收縮短板對應的指標,直至兩指標相遇。
下圖展示了貪婪策略的執行過程。
- 初始狀態下,指標
i
和j
分列陣列兩端。 - 計算當前狀態的容量
cap[i, j]
,並更新最大容量。 - 比較板
i
和板j
的高度,並將短板向內移動一格。 - 迴圈執行第
2.
步和第3.
步,直至i
和j
相遇時結束。
程式碼實現
程式碼迴圈最多 n
輪,因此時間複雜度為 $O(n)$ 。
變數 $i$、$j$、res
使用常數大小的額外空間,因此空間複雜度為 $O(1)$ 。
[file]{max_capacity}-[class]{}-[func]{max_capacity}
正確性證明
之所以貪婪比窮舉更快,是因為每輪的貪婪選擇都會“跳過”一些狀態。
比如在狀態 cap[i, j]
下,i
為短板、j
為長板。若貪婪地將短板 i
向內移動一格,會導致下圖所示的狀態被“跳過”。這意味著之後無法驗證這些狀態的容量大小。
$$
cap[i, i+1], cap[i, i+2], \dots, cap[i, j-2], cap[i, j-1]
觀察發現,這些被跳過的狀態實際上就是將長板 j
向內移動的所有狀態。前面我們已經證明內移長板一定會導致容量變小。也就是說,被跳過的狀態都不可能是最優解,跳過它們不會導致錯過最優解。
以上分析說明,移動短板的操作是“安全”的,貪婪策略是有效的。