hello-algo/chapter_backtracking/permutations_problem.md
2023-07-26 10:57:40 +08:00

29 KiB

comments
true

13.2.   全排列问题

全排列问题是回溯算法的一个典型应用。它的定义是在给定一个集合(如一个数组或字符串)的情况下,找出这个集合中元素的所有可能的排列。

下表列举了几个示例数据,包括输入数组和对应的所有排列。

输入数组 所有排列
[1] [1]
[1, 2] [1, 2], [2, 1]
[1, 2, 3] [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]

13.2.1.   无相等元素的情况

!!! question

输入一个整数数组,数组中不包含重复元素,返回所有可能的排列。

从回溯算法的角度看,我们可以把生成排列的过程想象成一系列选择的结果。假设输入数组为 [1, 2, 3] ,如果我们先选择 1 、再选择 3 、最后选择 2 ,则获得排列 [1, 3, 2] 。回退表示撤销一个选择,之后继续尝试其他选择。

从回溯代码的角度看,候选集合 choices 是输入数组中的所有元素,状态 state 是直至目前已被选择的元素。请注意,每个元素只允许被选择一次,因此 state 中的所有元素都应该是唯一的

如下图所示,我们可以将搜索过程展开成一个递归树,树中的每个节点代表当前状态 state 。从根节点开始,经过三轮选择后到达叶节点,每个叶节点都对应一个排列。

全排列的递归树

Fig. 全排列的递归树

重复选择剪枝

为了实现每个元素只被选择一次,我们考虑引入一个布尔型数组 selected ,其中 selected[i] 表示 choices[i] 是否已被选择。剪枝的实现原理为:

  • 在做出选择 choice[i] 后,我们就将 selected[i] 赋值为 \text{True} ,代表它已被选择。
  • 遍历选择列表 choices 时,跳过所有已被选择过的节点,即剪枝。

如下图所示,假设我们第一轮选择 1 ,第二轮选择 3 ,第三轮选择 2 ,则需要在第二轮剪掉元素 1 的分支,在第三轮剪掉元素 1, 3 的分支。

全排列剪枝示例

Fig. 全排列剪枝示例

观察上图发现,该剪枝操作将搜索空间大小从 O(n^n) 降低至 O(n!)

代码实现

想清楚以上信息之后,我们就可以在框架代码中做“完形填空”了。为了缩短代码行数,我们不单独实现框架代码中的各个函数,而是将他们展开在 backtrack() 函数中。

=== "Java"

```java title="permutations_i.java"
/* 回溯算法:全排列 I */
void backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {
    // 当状态长度等于元素数量时,记录解
    if (state.size() == choices.length) {
        res.add(new ArrayList<Integer>(state));
        return;
    }
    // 遍历所有选择
    for (int i = 0; i < choices.length; i++) {
        int choice = choices[i];
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if (!selected[i]) {
            // 尝试:做出选择,更新状态
            selected[i] = true;
            state.add(choice);
            // 进行下一轮选择
            backtrack(state, choices, selected, res);
            // 回退:撤销选择,恢复到之前的状态
            selected[i] = false;
            state.remove(state.size() - 1);
        }
    }
}

/* 全排列 I */
List<List<Integer>> permutationsI(int[] nums) {
    List<List<Integer>> res = new ArrayList<List<Integer>>();
    backtrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);
    return res;
}
```

=== "C++"

```cpp title="permutations_i.cpp"
/* 回溯算法:全排列 I */
void backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {
    // 当状态长度等于元素数量时,记录解
    if (state.size() == choices.size()) {
        res.push_back(state);
        return;
    }
    // 遍历所有选择
    for (int i = 0; i < choices.size(); i++) {
        int choice = choices[i];
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if (!selected[i]) {
            // 尝试:做出选择,更新状态
            selected[i] = true;
            state.push_back(choice);
            // 进行下一轮选择
            backtrack(state, choices, selected, res);
            // 回退:撤销选择,恢复到之前的状态
            selected[i] = false;
            state.pop_back();
        }
    }
}

/* 全排列 I */
vector<vector<int>> permutationsI(vector<int> nums) {
    vector<int> state;
    vector<bool> selected(nums.size(), false);
    vector<vector<int>> res;
    backtrack(state, nums, selected, res);
    return res;
}
```

=== "Python"

```python title="permutations_i.py"
def backtrack(
    state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
):
    """回溯算法:全排列 I"""
    # 当状态长度等于元素数量时,记录解
    if len(state) == len(choices):
        res.append(list(state))
        return
    # 遍历所有选择
    for i, choice in enumerate(choices):
        # 剪枝:不允许重复选择元素
        if not selected[i]:
            # 尝试:做出选择,更新状态
            selected[i] = True
            state.append(choice)
            # 进行下一轮选择
            backtrack(state, choices, selected, res)
            # 回退:撤销选择,恢复到之前的状态
            selected[i] = False
            state.pop()

def permutations_i(nums: list[int]) -> list[list[int]]:
    """全排列 I"""
    res = []
    backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
    return res
```

=== "Go"

```go title="permutations_i.go"
/* 回溯算法:全排列 I */
func backtrackI(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {
    // 当状态长度等于元素数量时,记录解
    if len(*state) == len(*choices) {
        newState := append([]int{}, *state...)
        *res = append(*res, newState)
    }
    // 遍历所有选择
    for i := 0; i < len(*choices); i++ {
        choice := (*choices)[i]
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if !(*selected)[i] {
            // 尝试:做出选择,更新状态
            (*selected)[i] = true
            *state = append(*state, choice)
            // 进行下一轮选择
            backtrackI(state, choices, selected, res)
            // 回退:撤销选择,恢复到之前的状态
            (*selected)[i] = false
            *state = (*state)[:len(*state)-1]
        }
    }
}

/* 全排列 I */
func permutationsI(nums []int) [][]int {
    res := make([][]int, 0)
    state := make([]int, 0)
    selected := make([]bool, len(nums))
    backtrackI(&state, &nums, &selected, &res)
    return res
}
```

=== "JavaScript"

```javascript title="permutations_i.js"
/* 回溯算法:全排列 I */
function backtrack(state, choices, selected, res) {
    // 当状态长度等于元素数量时,记录解
    if (state.length === choices.length) {
        res.push([...state]);
        return;
    }
    // 遍历所有选择
    choices.forEach((choice, i) => {
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if (!selected[i]) {
            // 尝试:做出选择,更新状态
            selected[i] = true;
            state.push(choice);
            // 进行下一轮选择
            backtrack(state, choices, selected, res);
            // 回退:撤销选择,恢复到之前的状态
            selected[i] = false;
            state.pop();
        }
    });
}

/* 全排列 I */
function permutationsI(nums) {
    const res = [];
    backtrack([], nums, Array(nums.length).fill(false), res);
    return res;
}
```

=== "TypeScript"

```typescript title="permutations_i.ts"
/* 回溯算法:全排列 I */
function backtrack(
    state: number[],
    choices: number[],
    selected: boolean[],
    res: number[][]
): void {
    // 当状态长度等于元素数量时,记录解
    if (state.length === choices.length) {
        res.push([...state]);
        return;
    }
    // 遍历所有选择
    choices.forEach((choice, i) => {
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if (!selected[i]) {
            // 尝试:做出选择,更新状态
            selected[i] = true;
            state.push(choice);
            // 进行下一轮选择
            backtrack(state, choices, selected, res);
            // 回退:撤销选择,恢复到之前的状态
            selected[i] = false;
            state.pop();
        }
    });
}

/* 全排列 I */
function permutationsI(nums: number[]): number[][] {
    const res: number[][] = [];
    backtrack([], nums, Array(nums.length).fill(false), res);
    return res;
}
```

=== "C"

```c title="permutations_i.c"
[class]{}-[func]{backtrack}

[class]{}-[func]{permutationsI}
```

=== "C#"

```csharp title="permutations_i.cs"
/* 回溯算法:全排列 I */
void backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {
    // 当状态长度等于元素数量时,记录解
    if (state.Count == choices.Length) {
        res.Add(new List<int>(state));
        return;
    }
    // 遍历所有选择
    for (int i = 0; i < choices.Length; i++) {
        int choice = choices[i];
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if (!selected[i]) {
            // 尝试:做出选择,更新状态
            selected[i] = true;
            state.Add(choice);
            // 进行下一轮选择
            backtrack(state, choices, selected, res);
            // 回退:撤销选择,恢复到之前的状态
            selected[i] = false;
            state.RemoveAt(state.Count - 1);
        }
    }
}

/* 全排列 I */
List<List<int>> permutationsI(int[] nums) {
    List<List<int>> res = new List<List<int>>();
    backtrack(new List<int>(), nums, new bool[nums.Length], res);
    return res;
}
```

=== "Swift"

```swift title="permutations_i.swift"
/* 回溯算法:全排列 I */
func backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {
    // 当状态长度等于元素数量时,记录解
    if state.count == choices.count {
        res.append(state)
        return
    }
    // 遍历所有选择
    for (i, choice) in choices.enumerated() {
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if !selected[i] {
            // 尝试:做出选择,更新状态
            selected[i] = true
            state.append(choice)
            // 进行下一轮选择
            backtrack(state: &state, choices: choices, selected: &selected, res: &res)
            // 回退:撤销选择,恢复到之前的状态
            selected[i] = false
            state.removeLast()
        }
    }
}

/* 全排列 I */
func permutationsI(nums: [Int]) -> [[Int]] {
    var state: [Int] = []
    var selected = Array(repeating: false, count: nums.count)
    var res: [[Int]] = []
    backtrack(state: &state, choices: nums, selected: &selected, res: &res)
    return res
}
```

=== "Zig"

```zig title="permutations_i.zig"
[class]{}-[func]{backtrack}

[class]{}-[func]{permutationsI}
```

=== "Dart"

```dart title="permutations_i.dart"
[class]{}-[func]{backtrack}

[class]{}-[func]{permutationsI}
```

=== "Rust"

```rust title="permutations_i.rs"
/* 回溯算法:全排列 I */
fn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {
    // 当状态长度等于元素数量时,记录解
    if state.len() == choices.len() {
        res.push(state);
        return;
    }
    // 遍历所有选择
    for i in 0..choices.len() {
        let choice = choices[i];
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if !selected[i] {
            // 尝试:做出选择,更新状态
            selected[i] = true;
            state.push(choice);
            // 进行下一轮选择
            backtrack(state.clone(), choices, selected, res);
            // 回退:撤销选择,恢复到之前的状态
            selected[i] = false;
            state.remove(state.len() - 1);
        }
    }
}

/* 全排列 I */
fn permutations_i(nums: &mut [i32]) -> Vec<Vec<i32>> {
    let mut res = Vec::new(); // 状态(子集)
    backtrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);
    res
}
```

13.2.2.   考虑相等元素的情况

!!! question

输入一个整数数组,**数组中可能包含重复元素**,返回所有不重复的排列。

假设输入数组为 [1, 1, 2] 。为了方便区分两个重复元素 1 ,我们将第二个 1 记为 \hat{1}

如下图所示,上述方法生成的排列有一半都是重复的。

重复排列

Fig. 重复排列

那么如何去除重复的排列呢?最直接地,考虑借助一个哈希表,直接对排列结果进行去重。然而这样做不够优雅,因为生成重复排列的搜索分支是没有必要的,应当被提前识别并剪枝,这样可以进一步提升算法效率。

相等元素剪枝

观察发现,在第一轮中,选择 1 或选择 \hat{1} 是等价的,在这两个选择之下生成的所有排列都是重复的。因此应该把 \hat{1} 剪枝掉。

同理,在第一轮选择 2 后,第二轮选择中的 1\hat{1} 也会产生重复分支,因此也应将第二轮的 \hat{1} 剪枝。

本质上看,我们的目标是在某一轮选择中,保证多个相等的元素仅被选择一次

重复排列剪枝

Fig. 重复排列剪枝

代码实现

在上一题的代码的基础上,我们考虑在每一轮选择中开启一个哈希表 duplicated ,用于记录该轮中已经尝试过的元素,并将重复元素剪枝。

=== "Java"

```java title="permutations_ii.java"
/* 回溯算法:全排列 II */
void backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {
    // 当状态长度等于元素数量时,记录解
    if (state.size() == choices.length) {
        res.add(new ArrayList<Integer>(state));
        return;
    }
    // 遍历所有选择
    Set<Integer> duplicated = new HashSet<Integer>();
    for (int i = 0; i < choices.length; i++) {
        int choice = choices[i];
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if (!selected[i] && !duplicated.contains(choice)) {
            // 尝试:做出选择,更新状态
            duplicated.add(choice); // 记录选择过的元素值
            selected[i] = true;
            state.add(choice);
            // 进行下一轮选择
            backtrack(state, choices, selected, res);
            // 回退:撤销选择,恢复到之前的状态
            selected[i] = false;
            state.remove(state.size() - 1);
        }
    }
}

/* 全排列 II */
List<List<Integer>> permutationsII(int[] nums) {
    List<List<Integer>> res = new ArrayList<List<Integer>>();
    backtrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);
    return res;
}
```

=== "C++"

```cpp title="permutations_ii.cpp"
/* 回溯算法:全排列 II */
void backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {
    // 当状态长度等于元素数量时,记录解
    if (state.size() == choices.size()) {
        res.push_back(state);
        return;
    }
    // 遍历所有选择
    unordered_set<int> duplicated;
    for (int i = 0; i < choices.size(); i++) {
        int choice = choices[i];
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if (!selected[i] && duplicated.find(choice) == duplicated.end()) {
            // 尝试:做出选择,更新状态
            duplicated.emplace(choice); // 记录选择过的元素值
            selected[i] = true;
            state.push_back(choice);
            // 进行下一轮选择
            backtrack(state, choices, selected, res);
            // 回退:撤销选择,恢复到之前的状态
            selected[i] = false;
            state.pop_back();
        }
    }
}

/* 全排列 II */
vector<vector<int>> permutationsII(vector<int> nums) {
    vector<int> state;
    vector<bool> selected(nums.size(), false);
    vector<vector<int>> res;
    backtrack(state, nums, selected, res);
    return res;
}
```

=== "Python"

```python title="permutations_ii.py"
def backtrack(
    state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
):
    """回溯算法:全排列 II"""
    # 当状态长度等于元素数量时,记录解
    if len(state) == len(choices):
        res.append(list(state))
        return
    # 遍历所有选择
    duplicated = set[int]()
    for i, choice in enumerate(choices):
        # 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if not selected[i] and choice not in duplicated:
            # 尝试:做出选择,更新状态
            duplicated.add(choice)  # 记录选择过的元素值
            selected[i] = True
            state.append(choice)
            # 进行下一轮选择
            backtrack(state, choices, selected, res)
            # 回退:撤销选择,恢复到之前的状态
            selected[i] = False
            state.pop()

def permutations_ii(nums: list[int]) -> list[list[int]]:
    """全排列 II"""
    res = []
    backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
    return res
```

=== "Go"

```go title="permutations_ii.go"
/* 回溯算法:全排列 II */
func backtrackII(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {
    // 当状态长度等于元素数量时,记录解
    if len(*state) == len(*choices) {
        newState := append([]int{}, *state...)
        *res = append(*res, newState)
    }
    // 遍历所有选择
    duplicated := make(map[int]struct{}, 0)
    for i := 0; i < len(*choices); i++ {
        choice := (*choices)[i]
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if _, ok := duplicated[choice]; !ok && !(*selected)[i] {
            // 尝试:做出选择,更新状态
            // 记录选择过的元素值
            duplicated[choice] = struct{}{}
            (*selected)[i] = true
            *state = append(*state, choice)
            // 进行下一轮选择
            backtrackI(state, choices, selected, res)
            // 回退:撤销选择,恢复到之前的状态
            (*selected)[i] = false
            *state = (*state)[:len(*state)-1]
        }
    }
}

/* 全排列 II */
func permutationsII(nums []int) [][]int {
    res := make([][]int, 0)
    state := make([]int, 0)
    selected := make([]bool, len(nums))
    backtrackII(&state, &nums, &selected, &res)
    return res
}
```

=== "JavaScript"

```javascript title="permutations_ii.js"
/* 回溯算法:全排列 II */
function backtrack(state, choices, selected, res) {
    // 当状态长度等于元素数量时,记录解
    if (state.length === choices.length) {
        res.push([...state]);
        return;
    }
    // 遍历所有选择
    const duplicated = new Set();
    choices.forEach((choice, i) => {
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if (!selected[i] && !duplicated.has(choice)) {
            // 尝试:做出选择,更新状态
            duplicated.add(choice); // 记录选择过的元素值
            selected[i] = true;
            state.push(choice);
            // 进行下一轮选择
            backtrack(state, choices, selected, res);
            // 回退:撤销选择,恢复到之前的状态
            selected[i] = false;
            state.pop();
        }
    });
}

/* 全排列 II */
function permutationsII(nums) {
    const res = [];
    backtrack([], nums, Array(nums.length).fill(false), res);
    return res;
}
```

=== "TypeScript"

```typescript title="permutations_ii.ts"
/* 回溯算法:全排列 II */
function backtrack(
    state: number[],
    choices: number[],
    selected: boolean[],
    res: number[][]
): void {
    // 当状态长度等于元素数量时,记录解
    if (state.length === choices.length) {
        res.push([...state]);
        return;
    }
    // 遍历所有选择
    const duplicated = new Set();
    choices.forEach((choice, i) => {
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if (!selected[i] && !duplicated.has(choice)) {
            // 尝试:做出选择,更新状态
            duplicated.add(choice); // 记录选择过的元素值
            selected[i] = true;
            state.push(choice);
            // 进行下一轮选择
            backtrack(state, choices, selected, res);
            // 回退:撤销选择,恢复到之前的状态
            selected[i] = false;
            state.pop();
        }
    });
}

/* 全排列 II */
function permutationsII(nums: number[]): number[][] {
    const res: number[][] = [];
    backtrack([], nums, Array(nums.length).fill(false), res);
    return res;
}
```

=== "C"

```c title="permutations_ii.c"
[class]{}-[func]{backtrack}

[class]{}-[func]{permutationsII}
```

=== "C#"

```csharp title="permutations_ii.cs"
/* 回溯算法:全排列 II */
void backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {
    // 当状态长度等于元素数量时,记录解
    if (state.Count == choices.Length) {
        res.Add(new List<int>(state));
        return;
    }
    // 遍历所有选择
    ISet<int> duplicated = new HashSet<int>();
    for (int i = 0; i < choices.Length; i++) {
        int choice = choices[i];
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if (!selected[i] && !duplicated.Contains(choice)) {
            // 尝试:做出选择,更新状态
            duplicated.Add(choice); // 记录选择过的元素值
            selected[i] = true;
            state.Add(choice);
            // 进行下一轮选择
            backtrack(state, choices, selected, res);
            // 回退:撤销选择,恢复到之前的状态
            selected[i] = false;
            state.RemoveAt(state.Count - 1);
        }
    }
}

/* 全排列 II */
List<List<int>> permutationsII(int[] nums) {
    List<List<int>> res = new List<List<int>>();
    backtrack(new List<int>(), nums, new bool[nums.Length], res);
    return res;
}
```

=== "Swift"

```swift title="permutations_ii.swift"
/* 回溯算法:全排列 II */
func backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {
    // 当状态长度等于元素数量时,记录解
    if state.count == choices.count {
        res.append(state)
        return
    }
    // 遍历所有选择
    var duplicated: Set<Int> = []
    for (i, choice) in choices.enumerated() {
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if !selected[i], !duplicated.contains(choice) {
            // 尝试:做出选择,更新状态
            duplicated.insert(choice) // 记录选择过的元素值
            selected[i] = true
            state.append(choice)
            // 进行下一轮选择
            backtrack(state: &state, choices: choices, selected: &selected, res: &res)
            // 回退:撤销选择,恢复到之前的状态
            selected[i] = false
            state.removeLast()
        }
    }
}

/* 全排列 II */
func permutationsII(nums: [Int]) -> [[Int]] {
    var state: [Int] = []
    var selected = Array(repeating: false, count: nums.count)
    var res: [[Int]] = []
    backtrack(state: &state, choices: nums, selected: &selected, res: &res)
    return res
}
```

=== "Zig"

```zig title="permutations_ii.zig"
[class]{}-[func]{backtrack}

[class]{}-[func]{permutationsII}
```

=== "Dart"

```dart title="permutations_ii.dart"
[class]{}-[func]{backtrack}

[class]{}-[func]{permutationsII}
```

=== "Rust"

```rust title="permutations_ii.rs"
/* 回溯算法:全排列 II */
fn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {
    // 当状态长度等于元素数量时,记录解
    if state.len() == choices.len() {
        res.push(state);
        return;
    }
    // 遍历所有选择
    let mut duplicated = HashSet::<i32>::new();
    for i in 0..choices.len() {
        let choice = choices[i];
        // 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
        if !selected[i] && !duplicated.contains(&choice) {
            // 尝试:做出选择,更新状态
            duplicated.insert(choice); // 记录选择过的元素值
            selected[i] = true;
            state.push(choice);
            // 进行下一轮选择
            backtrack(state.clone(), choices, selected, res);
            // 回退:撤销选择,恢复到之前的状态
            selected[i] = false;
            state.remove(state.len() - 1);
        }
    }
}

/* 全排列 II */
fn permutations_ii(nums: &mut [i32]) -> Vec<Vec<i32>> {
    let mut res = Vec::new();
    backtrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);
    res
}
```

假设元素两两之间互不相同,则 n 个元素共有 n! 种排列(阶乘);在记录结果时,需要复制长度为 n 的列表,使用 O(n) 时间。因此,时间复杂度为 $O(n!n)$

最大递归深度为 n ,使用 O(n) 栈帧空间。selected 使用 O(n) 空间。同一时刻最多共有 nduplicated ,使用 O(n^2) 空间。因此空间复杂度为 $O(n^2)$

两种剪枝对比

请注意,虽然 selectedduplicated 都用作剪枝,但两者的目标不同:

  • 重复选择剪枝:整个搜索过程中只有一个 selected 。它记录的是当前状态中包含哪些元素,作用是避免某个元素在 state 中重复出现。
  • 相等元素剪枝:每轮选择(即每个开启的 backtrack 函数)都包含一个 duplicated 。它记录的是在遍历中哪些元素已被选择过,作用是保证相等元素只被选择一次。

下图展示了两个剪枝条件的生效范围。注意,树中的每个节点代表一个选择,从根节点到叶节点的路径上的各个节点构成一个排列。

两种剪枝条件的作用范围

Fig. 两种剪枝条件的作用范围