hello-algo/docs/chapter_array_and_linkedlist/linked_list.md

23 KiB
Executable file
Raw Blame History

链表

内存空间是所有程序的公共资源,排除已被占用的内存空间,空闲内存空间通常散落在内存各处。在上一节中,我们提到存储数组的内存空间必须是连续的,而当我们需要申请一个非常大的数组时,空闲内存中可能没有这么大的连续空间。与数组相比,链表更具灵活性,它可以被存储在非连续的内存空间中。

「链表 Linked List」是一种线性数据结构其每个元素都是一个节点对象各个节点之间通过指针连接从当前节点通过指针可以访问到下一个节点。由于指针记录了下个节点的内存地址,因此无需保证内存地址的连续性,从而可以将各个节点分散存储在内存各处。

链表「节点 Node」包含两项数据一是节点「值 Value」二是指向下一节点的「指针 Pointer」或称「引用 Reference」。

链表定义与存储方式

=== "Java"

```java title=""
/* 链表节点类 */
class ListNode {
    int val;        // 节点值
    ListNode next;  // 指向下一节点的指针(引用)
    ListNode(int x) { val = x; }  // 构造函数
}
```

=== "C++"

```cpp title=""
/* 链表节点结构体 */
struct ListNode {
    int val;         // 节点值
    ListNode *next;  // 指向下一节点的指针(引用)
    ListNode(int x) : val(x), next(nullptr) {}  // 构造函数
};
```

=== "Python"

```python title=""
class ListNode:
    """链表节点类"""
    def __init__(self, val: int):
        self.val: int = val                  # 节点值
        self.next: Optional[ListNode] = None # 指向下一节点的指针(引用)
```

=== "Go"

```go title=""
/* 链表节点结构体 */
type ListNode struct {
    Val  int       // 节点值
    Next *ListNode // 指向下一节点的指针(引用)
}

// NewListNode 构造函数,创建一个新的链表
func NewListNode(val int) *ListNode {
    return &ListNode{
        Val:  val,
        Next: nil,
    }
}
```

=== "JS"

```javascript title=""
/* 链表节点类 */
class ListNode {
    val;
    next;
    constructor(val, next) {
        this.val = (val === undefined ? 0 : val);       // 节点值
        this.next = (next === undefined ? null : next); // 指向下一节点的引用
    }
}
```

=== "TS"

```typescript title=""
/* 链表节点类 */
class ListNode {
    val: number;
    next: ListNode | null;
    constructor(val?: number, next?: ListNode | null) {
        this.val = val === undefined ? 0 : val;        // 节点值
        this.next = next === undefined ? null : next;  // 指向下一节点的引用
    }
}
```

=== "C"

```c title=""
/* 链表节点结构体 */
struct ListNode {
    int val;               // 节点值
    struct ListNode *next; // 指向下一节点的指针(引用)
};

typedef struct ListNode ListNode;

/* 构造函数 */
ListNode *newListNode(int val) {
    ListNode *node, *next;
    node = (ListNode *) malloc(sizeof(ListNode));
    node->val = val;
    node->next = NULL;
    return node;
}
```

=== "C#"

```csharp title=""
/* 链表节点类 */
class ListNode {
    int val;         // 节点值
    ListNode next;   // 指向下一节点的引用
    ListNode(int x) => val = x;  //构造函数
}
```

=== "Swift"

```swift title=""
/* 链表节点类 */
class ListNode {
    var val: Int // 节点值
    var next: ListNode? // 指向下一节点的指针(引用)

    init(x: Int) { // 构造函数
        val = x
    }
}
```

=== "Zig"

```zig title=""
// 链表节点类
pub fn ListNode(comptime T: type) type {
    return struct {
        const Self = @This();
        
        val: T = 0, // 节点值
        next: ?*Self = null, // 指向下一节点的指针(引用)

        // 构造函数
        pub fn init(self: *Self, x: i32) void {
            self.val = x;
            self.next = null;
        }
    };
}
```

=== "Dart"

```dart title=""
/* 链表节点类 */
class ListNode {
  int val; // 节点值
  ListNode? next; // 指向下一节点的指针(引用)
  ListNode(this.val, [this.next]); // 构造函数
}
```

=== "Rust"

```rust title=""

```

!!! question "尾节点指向什么?"

我们将链表的最后一个节点称为「尾节点」,其指向的是“空”,在 Java, C++, Python 中分别记为 $\text{null}$ , $\text{nullptr}$ , $\text{None}$ 。在不引起歧义的前提下,本书都使用 $\text{None}$ 来表示空。

!!! question "如何称呼链表?"

在编程语言中,数组整体就是一个变量,例如数组 `nums` ,包含各个元素 `nums[0]` , `nums[1]` 等等。而链表是由多个节点对象组成,我们通常将头节点当作链表的代称,例如头节点 `head` 和链表 `head` 实际上是同义的。

链表初始化方法。建立链表分为两步,第一步是初始化各个节点对象,第二步是构建引用指向关系。完成后,即可以从链表的头节点(即首个节点)出发,通过指针 next 依次访问所有节点。

=== "Java"

```java title="linked_list.java"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点 
ListNode n0 = new ListNode(1);
ListNode n1 = new ListNode(3);
ListNode n2 = new ListNode(2);
ListNode n3 = new ListNode(5);
ListNode n4 = new ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```

=== "C++"

```cpp title="linked_list.cpp"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点 
ListNode* n0 = new ListNode(1);
ListNode* n1 = new ListNode(3);
ListNode* n2 = new ListNode(2);
ListNode* n3 = new ListNode(5);
ListNode* n4 = new ListNode(4);
// 构建引用指向
n0->next = n1;
n1->next = n2;
n2->next = n3;
n3->next = n4;
```

=== "Python"

```python title="linked_list.py"
# 初始化链表 1 -> 3 -> 2 -> 5 -> 4
# 初始化各个节点 
n0 = ListNode(1)
n1 = ListNode(3)
n2 = ListNode(2)
n3 = ListNode(5)
n4 = ListNode(4)
# 构建引用指向
n0.next = n1
n1.next = n2
n2.next = n3
n3.next = n4
```

=== "Go"

```go title="linked_list.go"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
n0 := NewListNode(1)
n1 := NewListNode(3)
n2 := NewListNode(2)
n3 := NewListNode(5)
n4 := NewListNode(4)
// 构建引用指向
n0.Next = n1
n1.Next = n2
n2.Next = n3
n3.Next = n4
```

=== "JS"

```javascript title="linked_list.js"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
const n0 = new ListNode(1);
const n1 = new ListNode(3);
const n2 = new ListNode(2);
const n3 = new ListNode(5);
const n4 = new ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```

=== "TS"

```typescript title="linked_list.ts"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
const n0 = new ListNode(1);
const n1 = new ListNode(3);
const n2 = new ListNode(2);
const n3 = new ListNode(5);
const n4 = new ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```

=== "C"

```c title="linked_list.c"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点 
ListNode* n0 = newListNode(1);
ListNode* n1 = newListNode(3);
ListNode* n2 = newListNode(2);
ListNode* n3 = newListNode(5);
ListNode* n4 = newListNode(4);
// 构建引用指向
n0->next = n1;
n1->next = n2;
n2->next = n3;
n3->next = n4;
```

=== "C#"

```csharp title="linked_list.cs"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点 
ListNode n0 = new ListNode(1);
ListNode n1 = new ListNode(3);
ListNode n2 = new ListNode(2);
ListNode n3 = new ListNode(5);
ListNode n4 = new ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```

=== "Swift"

```swift title="linked_list.swift"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
let n0 = ListNode(x: 1)
let n1 = ListNode(x: 3)
let n2 = ListNode(x: 2)
let n3 = ListNode(x: 5)
let n4 = ListNode(x: 4)
// 构建引用指向
n0.next = n1
n1.next = n2
n2.next = n3
n3.next = n4
```

=== "Zig"

```zig title="linked_list.zig"
// 初始化链表
// 初始化各个节点 
var n0 = inc.ListNode(i32){.val = 1};
var n1 = inc.ListNode(i32){.val = 3};
var n2 = inc.ListNode(i32){.val = 2};
var n3 = inc.ListNode(i32){.val = 5};
var n4 = inc.ListNode(i32){.val = 4};
// 构建引用指向
n0.next = &n1;
n1.next = &n2;
n2.next = &n3;
n3.next = &n4;
```

=== "Dart"

```dart title="linked_list.dart"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */\
// 初始化各个节点
ListNode n0 = ListNode(1);
ListNode n1 = ListNode(3);
ListNode n2 = ListNode(2);
ListNode n3 = ListNode(5);
ListNode n4 = ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```

=== "Rust"

```rust title="linked_list.rs"

```

链表优点

链表中插入与删除节点的操作效率高。例如,如果我们想在链表中间的两个节点 A , B 之间插入一个新节点 P ,我们只需要改变两个节点指针即可,时间复杂度为 O(1) ;相比之下,数组的插入操作效率要低得多。

链表插入节点

=== "Java"

```java title="linked_list.java"
[class]{linked_list}-[func]{insert}
```

=== "C++"

```cpp title="linked_list.cpp"
[class]{}-[func]{insert}
```

=== "Python"

```python title="linked_list.py"
[class]{}-[func]{insert}
```

=== "Go"

```go title="linked_list.go"
[class]{}-[func]{insertNode}
```

=== "JS"

```javascript title="linked_list.js"
[class]{}-[func]{insert}
```

=== "TS"

```typescript title="linked_list.ts"
[class]{}-[func]{insert}
```

=== "C"

```c title="linked_list.c"
[class]{}-[func]{insert}
```

=== "C#"

```csharp title="linked_list.cs"
[class]{linked_list}-[func]{insert}
```

=== "Swift"

```swift title="linked_list.swift"
[class]{}-[func]{insert}
```

=== "Zig"

```zig title="linked_list.zig"
[class]{}-[func]{insert}
```

=== "Dart"

```dart title="linked_list.dart"
[class]{}-[func]{insert}
```

=== "Rust"

```rust title="linked_list.rs"
[class]{}-[func]{insert}
```

在链表中删除节点也非常方便,只需改变一个节点的指针即可。如下图所示,尽管在删除操作完成后,节点 P 仍然指向 n1 ,但实际上 P 已经不再属于此链表,因为遍历此链表时无法访问到 P

链表删除节点

=== "Java"

```java title="linked_list.java"
[class]{linked_list}-[func]{remove}
```

=== "C++"

```cpp title="linked_list.cpp"
[class]{}-[func]{remove}
```

=== "Python"

```python title="linked_list.py"
[class]{}-[func]{remove}
```

=== "Go"

```go title="linked_list.go"
[class]{}-[func]{removeNode}
```

=== "JS"

```javascript title="linked_list.js"
[class]{}-[func]{remove}
```

=== "TS"

```typescript title="linked_list.ts"
[class]{}-[func]{remove}
```

=== "C"

```c title="linked_list.c"
[class]{}-[func]{removeNode}
```

=== "C#"

```csharp title="linked_list.cs"
[class]{linked_list}-[func]{remove}
```

=== "Swift"

```swift title="linked_list.swift"
[class]{}-[func]{remove}
```

=== "Zig"

```zig title="linked_list.zig"
[class]{}-[func]{remove}
```

=== "Dart"

```dart title="linked_list.dart"
[class]{}-[func]{remove}
```

=== "Rust"

```rust title="linked_list.rs"
[class]{}-[func]{remove}
```

链表缺点

链表访问节点效率较低。如上节所述,数组可以在 O(1) 时间下访问任意元素。然而,链表无法直接访问任意节点,这是因为系统需要从头节点出发,逐个向后遍历直至找到目标节点。例如,若要访问链表索引为 index(即第 index + 1 个)的节点,则需要向后遍历 index 轮。

=== "Java"

```java title="linked_list.java"
[class]{linked_list}-[func]{access}
```

=== "C++"

```cpp title="linked_list.cpp"
[class]{}-[func]{access}
```

=== "Python"

```python title="linked_list.py"
[class]{}-[func]{access}
```

=== "Go"

```go title="linked_list.go"
[class]{}-[func]{access}
```

=== "JS"

```javascript title="linked_list.js"
[class]{}-[func]{access}
```

=== "TS"

```typescript title="linked_list.ts"
[class]{}-[func]{access}
```

=== "C"

```c title="linked_list.c"
[class]{}-[func]{access}
```

=== "C#"

```csharp title="linked_list.cs"
[class]{linked_list}-[func]{access}
```

=== "Swift"

```swift title="linked_list.swift"
[class]{}-[func]{access}
```

=== "Zig"

```zig title="linked_list.zig"
[class]{}-[func]{access}
```

=== "Dart"

```dart title="linked_list.dart"
[class]{}-[func]{access}
```

=== "Rust"

```rust title="linked_list.rs"
[class]{}-[func]{access}
```

链表的内存占用较大。链表以节点为单位,每个节点除了保存值之外,还需额外保存指针(引用)。这意味着在相同数据量的情况下,链表比数组需要占用更多的内存空间。

链表常用操作

遍历链表查找。遍历链表,查找链表内值为 target 的节点,输出节点在链表中的索引。

=== "Java"

```java title="linked_list.java"
[class]{linked_list}-[func]{find}
```

=== "C++"

```cpp title="linked_list.cpp"
[class]{}-[func]{find}
```

=== "Python"

```python title="linked_list.py"
[class]{}-[func]{find}
```

=== "Go"

```go title="linked_list.go"
[class]{}-[func]{findNode}
```

=== "JS"

```javascript title="linked_list.js"
[class]{}-[func]{find}
```

=== "TS"

```typescript title="linked_list.ts"
[class]{}-[func]{find}
```

=== "C"

```c title="linked_list.c"
[class]{}-[func]{find}
```

=== "C#"

```csharp title="linked_list.cs"
[class]{linked_list}-[func]{find}
```

=== "Swift"

```swift title="linked_list.swift"
[class]{}-[func]{find}
```

=== "Zig"

```zig title="linked_list.zig"
[class]{}-[func]{find}
```

=== "Dart"

```dart title="linked_list.dart"
[class]{}-[func]{find}
```

=== "Rust"

```rust title="linked_list.rs"
[class]{}-[func]{find}
```

常见链表类型

单向链表。即上述介绍的普通链表。单向链表的节点包含值和指向下一节点的指针(引用)两项数据。我们将首个节点称为头节点,将最后一个节点成为尾节点,尾节点指向空 \text{None}

环形链表。如果我们令单向链表的尾节点指向头节点(即首尾相接),则得到一个环形链表。在环形链表中,任意节点都可以视作头节点。

双向链表。与单向链表相比,双向链表记录了两个方向的指针(引用)。双向链表的节点定义同时包含指向后继节点(下一节点)和前驱节点(上一节点)的指针。相较于单向链表,双向链表更具灵活性,可以朝两个方向遍历链表,但相应地也需要占用更多的内存空间。

=== "Java"

```java title=""
/* 双向链表节点类 */
class ListNode {
    int val;        // 节点值
    ListNode next;  // 指向后继节点的指针(引用)
    ListNode prev;  // 指向前驱节点的指针(引用)
    ListNode(int x) { val = x; }  // 构造函数
}
```

=== "C++"

```cpp title=""
/* 双向链表节点结构体 */
struct ListNode {
    int val;         // 节点值
    ListNode *next;  // 指向后继节点的指针(引用)
    ListNode *prev;  // 指向前驱节点的指针(引用)
    ListNode(int x) : val(x), next(nullptr), prev(nullptr) {}  // 构造函数
};
```

=== "Python"

```python title=""
class ListNode:
    """双向链表节点类"""
    def __init__(self, val: int):
        self.val: int = val                   # 节点值
        self.next: Optional[ListNode] = None  # 指向后继节点的指针(引用)
        self.prev: Optional[ListNode] = None  # 指向前驱节点的指针(引用)
```

=== "Go"

```go title=""
/* 双向链表节点结构体 */
type DoublyListNode struct {
    Val  int             // 节点值
    Next *DoublyListNode // 指向后继节点的指针(引用)
    Prev *DoublyListNode // 指向前驱节点的指针(引用)
}

// NewDoublyListNode 初始化
func NewDoublyListNode(val int) *DoublyListNode {
    return &DoublyListNode{
        Val:  val,
        Next: nil,
        Prev: nil,
    }
}
```

=== "JS"

```javascript title=""
/* 双向链表节点类 */
class ListNode {
    val;
    next;
    prev;
    constructor(val, next, prev) {
        this.val = val  ===  undefined ? 0 : val;        // 节点值
        this.next = next  ===  undefined ? null : next;  // 指向后继节点的指针(引用)
        this.prev = prev  ===  undefined ? null : prev;  // 指向前驱节点的指针(引用)
    }
}
```

=== "TS"

```typescript title=""
/* 双向链表节点类 */
class ListNode {
    val: number;
    next: ListNode | null;
    prev: ListNode | null;
    constructor(val?: number, next?: ListNode | null, prev?: ListNode | null) {
        this.val = val  ===  undefined ? 0 : val;        // 节点值
        this.next = next  ===  undefined ? null : next;  // 指向后继节点的指针(引用)
        this.prev = prev  ===  undefined ? null : prev;  // 指向前驱节点的指针(引用)
    }
}
```

=== "C"

```c title=""
/* 双向链表节点结构体 */
struct ListNode {
    int val;               // 节点值
    struct ListNode *next; // 指向后继节点的指针(引用)
    struct ListNode *prev; // 指向前驱节点的指针(引用)
};

typedef struct ListNode ListNode;

/* 构造函数 */
ListNode *newListNode(int val) {
    ListNode *node, *next;
    node = (ListNode *) malloc(sizeof(ListNode));
    node->val = val;
    node->next = NULL;
    node->prev = NULL;
    return node;
}
```

=== "C#"

```csharp title=""
/* 双向链表节点类 */
class ListNode {
    int val;        // 节点值
    ListNode next;  // 指向后继节点的指针(引用)
    ListNode prev;  // 指向前驱节点的指针(引用)
    ListNode(int x) => val = x;  // 构造函数
}
```

=== "Swift"

```swift title=""
/* 双向链表节点类 */
class ListNode {
    var val: Int // 节点值
    var next: ListNode? // 指向后继节点的指针(引用)
    var prev: ListNode? // 指向前驱节点的指针(引用)

    init(x: Int) { // 构造函数
        val = x
    }
}
```

=== "Zig"

```zig title=""
// 双向链表节点类
pub fn ListNode(comptime T: type) type {
    return struct {
        const Self = @This();
        
        val: T = 0, // 节点值
        next: ?*Self = null, // 指向后继节点的指针(引用)
        prev: ?*Self = null, // 指向前驱节点的指针(引用)

        // 构造函数
        pub fn init(self: *Self, x: i32) void {
            self.val = x;
            self.next = null;
            self.prev = null;
        }
    };
}
```

=== "Dart"

```dart title=""
/* 双向链表节点类 */
class ListNode {
    int val;        // 节点值
    ListNode next;  // 指向后继节点的指针(引用)
    ListNode prev;  // 指向前驱节点的指针(引用)
    ListNode(this.val, [this.next, this.prev]);  // 构造函数
}
```

=== "Rust"

```rust title=""

```

常见链表种类

链表典型应用

单向链表通常用于实现栈、队列、散列表和图等数据结构。

  • 栈与队列:当插入和删除操作都在链表的一端进行时,它表现出先进后出的的特性,对应栈;当插入操作在链表的一端进行,删除操作在链表的另一端进行,它表现出先进先出的特性,对应队列。
  • 散列表:链地址法是解决哈希冲突的主流方案之一,在该方案中,所有冲突的元素都会被放到一个链表中。
  • :邻接表是表示图的一种常用方式,在其中,图的每个顶点都与一个链表相关联,链表中的每个元素都代表与该顶点相连的其他顶点。

双向链表常被用于需要快速查找前一个和下一个元素的场景。

  • 高级数据结构比如在红黑树、B 树中,我们需要知道一个节点的父节点,这可以通过在节点中保存一个指向父节点的指针来实现,类似于双向链表。
  • 浏览器历史:在网页浏览器中,当用户点击前进或后退按钮时,浏览器需要知道用户访问过的前一个和后一个网页。双向链表的特性使得这种操作变得简单。
  • LRU 算法在缓存淘汰算法LRU我们需要快速找到最近最少使用的数据以及支持快速地添加和删除节点。这时候使用双向链表就非常合适。

循环链表常被用于需要周期性操作的场景,比如操作系统的资源调度。

  • 时间片轮转调度算法:在操作系统中,时间片轮转调度算法是一种常见的 CPU 调度算法它需要对一组进程进行循环。每个进程被赋予一个时间片当时间片用完时CPU 将切换到下一个进程。这种循环的操作就可以通过循环链表来实现。
  • 数据缓冲区:在某些数据缓冲区的实现中,也可能会使用到循环链表。比如在音频、视频播放器中,数据流可能会被分成多个缓冲块并放入一个循环链表,以便实现无缝播放。