hello-algo/zh-hant/docs/chapter_hashing/summary.md
Yudong Jin 5f7385c8a3
feat: Traditional Chinese version (#1163)
* First commit

* Update mkdocs.yml

* Translate all the docs to traditional Chinese

* Translate the code files.

* Translate the docker file

* Fix mkdocs.yml

* Translate all the figures from SC to TC

* 二叉搜尋樹 -> 二元搜尋樹

* Update terminology.

* Update terminology

* 构造函数/构造方法 -> 建構子
异或 -> 互斥或

* 擴充套件 -> 擴展

* constant - 常量 - 常數

* 類	-> 類別

* AVL -> AVL 樹

* 數組 -> 陣列

* 係統 -> 系統
斐波那契數列 -> 費波那契數列
運算元量 -> 運算量
引數 -> 參數

* 聯絡 -> 關聯

* 麵試 -> 面試

* 面向物件 -> 物件導向
歸併排序 -> 合併排序
范式 -> 範式

* Fix 算法 -> 演算法

* 錶示 -> 表示
反碼 -> 一補數
補碼 -> 二補數
列列尾部 -> 佇列尾部
區域性性 -> 區域性
一摞 -> 一疊

* Synchronize with main branch

* 賬號 -> 帳號
推匯 -> 推導

* Sync with main branch

* First commit

* Update mkdocs.yml

* Translate all the docs to traditional Chinese

* Translate the code files.

* Translate the docker file

* Fix mkdocs.yml

* Translate all the figures from SC to TC

* 二叉搜尋樹 -> 二元搜尋樹

* Update terminology

* 构造函数/构造方法 -> 建構子
异或 -> 互斥或

* 擴充套件 -> 擴展

* constant - 常量 - 常數

* 類	-> 類別

* AVL -> AVL 樹

* 數組 -> 陣列

* 係統 -> 系統
斐波那契數列 -> 費波那契數列
運算元量 -> 運算量
引數 -> 參數

* 聯絡 -> 關聯

* 麵試 -> 面試

* 面向物件 -> 物件導向
歸併排序 -> 合併排序
范式 -> 範式

* Fix 算法 -> 演算法

* 錶示 -> 表示
反碼 -> 一補數
補碼 -> 二補數
列列尾部 -> 佇列尾部
區域性性 -> 區域性
一摞 -> 一疊

* Synchronize with main branch

* 賬號 -> 帳號
推匯 -> 推導

* Sync with main branch

* Update terminology.md

* 操作数量(num. of operations)-> 操作數量

* 字首和->前綴和

* Update figures

* 歸 -> 迴
記憶體洩漏 -> 記憶體流失

* Fix the bug of the file filter

* 支援 -> 支持
Add zh-Hant/README.md

* Add the zh-Hant chapter covers.
Bug fixes.

* 外掛 -> 擴充功能

* Add the landing page for zh-Hant version

* Unify the font of the chapter covers for the zh, en, and zh-Hant version

* Move zh-Hant/ to zh-hant/

* Translate terminology.md to traditional Chinese
2024-04-06 02:30:11 +08:00

47 lines
4.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 小結
### 重點回顧
- 輸入 `key` ,雜湊表能夠在 $O(1)$ 時間內查詢到 `value` ,效率非常高。
- 常見的雜湊表操作包括查詢、新增鍵值對、刪除鍵值對和走訪雜湊表等。
- 雜湊函式將 `key` 對映為陣列索引,從而訪問對應桶並獲取 `value`
- 兩個不同的 `key` 可能在經過雜湊函式後得到相同的陣列索引,導致查詢結果出錯,這種現象被稱為雜湊衝突。
- 雜湊表容量越大,雜湊衝突的機率就越低。因此可以透過擴容雜湊表來緩解雜湊衝突。與陣列擴容類似,雜湊表擴容操作的開銷很大。
- 負載因子定義為雜湊表中元素數量除以桶數量,反映了雜湊衝突的嚴重程度,常用作觸發雜湊表擴容的條件。
- 鏈式位址透過將單個元素轉化為鏈結串列,將所有衝突元素儲存在同一個鏈結串列中。然而,鏈結串列過長會降低查詢效率,可以透過進一步將鏈結串列轉換為紅黑樹來提高效率。
- 開放定址透過多次探測來處理雜湊衝突。線性探查使用固定步長,缺點是不能刪除元素,且容易產生聚集。多次雜湊使用多個雜湊函式進行探測,相較線性探查更不易產生聚集,但多個雜湊函式增加了計算量。
- 不同程式語言採取了不同的雜湊表實現。例如Java 的 `HashMap` 使用鏈式位址,而 Python 的 `Dict` 採用開放定址。
- 在雜湊表中,我們希望雜湊演算法具有確定性、高效率和均勻分佈的特點。在密碼學中,雜湊演算法還應該具備抗碰撞性和雪崩效應。
- 雜湊演算法通常採用大質數作為模數,以最大化地保證雜湊值均勻分佈,減少雜湊衝突。
- 常見的雜湊演算法包括 MD5、SHA-1、SHA-2 和 SHA-3 等。MD5 常用於校驗檔案完整性SHA-2 常用於安全應用與協議。
- 程式語言通常會為資料型別提供內建雜湊演算法,用於計算雜湊表中的桶索引。通常情況下,只有不可變物件是可雜湊的。
### Q & A
**Q**:雜湊表的時間複雜度在什麼情況下是 $O(n)$
當雜湊衝突比較嚴重時,雜湊表的時間複雜度會退化至 $O(n)$ 。當雜湊函式設計得比較好、容量設定比較合理、衝突比較平均時,時間複雜度是 $O(1)$ 。我們使用程式語言內建的雜湊表時,通常認為時間複雜度是 $O(1)$ 。
**Q**:為什麼不使用雜湊函式 $f(x) = x$ 呢?這樣就不會有衝突了。
在 $f(x) = x$ 雜湊函式下,每個元素對應唯一的桶索引,這與陣列等價。然而,輸入空間通常遠大於輸出空間(陣列長度),因此雜湊函式的最後一步往往是對陣列長度取模。換句話說,雜湊表的目標是將一個較大的狀態空間對映到一個較小的空間,並提供 $O(1)$ 的查詢效率。
**Q**:雜湊表底層實現是陣列、鏈結串列、二元樹,但為什麼效率可以比它們更高呢?
首先,雜湊表的時間效率變高,但空間效率變低了。雜湊表有相當一部分記憶體未使用。
其次,只是在特定使用場景下時間效率變高了。如果一個功能能夠在相同的時間複雜度下使用陣列或鏈結串列實現,那麼通常比雜湊表更快。這是因為雜湊函式計算需要開銷,時間複雜度的常數項更大。
最後,雜湊表的時間複雜度可能發生劣化。例如在鏈式位址中,我們採取在鏈結串列或紅黑樹中執行查詢操作,仍然有退化至 $O(n)$ 時間的風險。
**Q**:多次雜湊有不能直接刪除元素的缺陷嗎?標記為已刪除的空間還能再次使用嗎?
多次雜湊是開放定址的一種,開放定址法都有不能直接刪除元素的缺陷,需要透過標記刪除。標記為已刪除的空間可以再次使用。當將新元素插入雜湊表,並且透過雜湊函式找到標記為已刪除的位置時,該位置可以被新元素使用。這樣做既能保持雜湊表的探測序列不變,又能保證雜湊表的空間使用率。
**Q**:為什麼線上性探查中,查詢元素的時候會出現雜湊衝突呢?
查詢的時候透過雜湊函式找到對應的桶和鍵值對,發現 `key` 不匹配,這就代表有雜湊衝突。因此,線性探查法會根據預先設定的步長依次向下查詢,直至找到正確的鍵值對或無法找到跳出為止。
**Q**:為什麼雜湊表擴容能夠緩解雜湊衝突?
雜湊函式的最後一步往往是對陣列長度 $n$ 取模(取餘),讓輸出值落在陣列索引範圍內;在擴容後,陣列長度 $n$ 發生變化,而 `key` 對應的索引也可能發生變化。原先落在同一個桶的多個 `key` ,在擴容後可能會被分配到多個桶中,從而實現雜湊衝突的緩解。