mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 14:56:29 +08:00
f68bbb0d59
* Revised the book * Update the book with the second revised edition * Revise base on the manuscript of the first edition
97 lines
4.8 KiB
Markdown
97 lines
4.8 KiB
Markdown
# 汉诺塔问题
|
||
|
||
在归并排序和构建二叉树中,我们都是将原问题分解为两个规模为原问题一半的子问题。然而对于汉诺塔问题,我们采用不同的分解策略。
|
||
|
||
!!! question
|
||
|
||
给定三根柱子,记为 `A`、`B` 和 `C` 。起始状态下,柱子 `A` 上套着 $n$ 个圆盘,它们从上到下按照从小到大的顺序排列。我们的任务是要把这 $n$ 个圆盘移到柱子 `C` 上,并保持它们的原有顺序不变(如下图所示)。在移动圆盘的过程中,需要遵守以下规则。
|
||
|
||
1. 圆盘只能从一根柱子顶部拿出,从另一根柱子顶部放入。
|
||
2. 每次只能移动一个圆盘。
|
||
3. 小圆盘必须时刻位于大圆盘之上。
|
||
|
||
![汉诺塔问题示例](hanota_problem.assets/hanota_example.png)
|
||
|
||
**我们将规模为 $i$ 的汉诺塔问题记作 $f(i)$** 。例如 $f(3)$ 代表将 $3$ 个圆盘从 `A` 移动至 `C` 的汉诺塔问题。
|
||
|
||
### 考虑基本情况
|
||
|
||
如下图所示,对于问题 $f(1)$ ,即当只有一个圆盘时,我们将它直接从 `A` 移动至 `C` 即可。
|
||
|
||
=== "<1>"
|
||
![规模为 1 的问题的解](hanota_problem.assets/hanota_f1_step1.png)
|
||
|
||
=== "<2>"
|
||
![hanota_f1_step2](hanota_problem.assets/hanota_f1_step2.png)
|
||
|
||
如下图所示,对于问题 $f(2)$ ,即当有两个圆盘时,**由于要时刻满足小圆盘在大圆盘之上,因此需要借助 `B` 来完成移动**。
|
||
|
||
1. 先将上面的小圆盘从 `A` 移至 `B` 。
|
||
2. 再将大圆盘从 `A` 移至 `C` 。
|
||
3. 最后将小圆盘从 `B` 移至 `C` 。
|
||
|
||
=== "<1>"
|
||
![规模为 2 的问题的解](hanota_problem.assets/hanota_f2_step1.png)
|
||
|
||
=== "<2>"
|
||
![hanota_f2_step2](hanota_problem.assets/hanota_f2_step2.png)
|
||
|
||
=== "<3>"
|
||
![hanota_f2_step3](hanota_problem.assets/hanota_f2_step3.png)
|
||
|
||
=== "<4>"
|
||
![hanota_f2_step4](hanota_problem.assets/hanota_f2_step4.png)
|
||
|
||
解决问题 $f(2)$ 的过程可总结为:**将两个圆盘借助 `B` 从 `A` 移至 `C`** 。其中,`C` 称为目标柱、`B` 称为缓冲柱。
|
||
|
||
### 子问题分解
|
||
|
||
对于问题 $f(3)$ ,即当有三个圆盘时,情况变得稍微复杂了一些。
|
||
|
||
因为已知 $f(1)$ 和 $f(2)$ 的解,所以我们可从分治角度思考,**将 `A` 顶部的两个圆盘看作一个整体**,执行下图所示的步骤。这样三个圆盘就被顺利地从 `A` 移至 `C` 了。
|
||
|
||
1. 令 `B` 为目标柱、`C` 为缓冲柱,将两个圆盘从 `A` 移至 `B` 。
|
||
2. 将 `A` 中剩余的一个圆盘从 `A` 直接移动至 `C` 。
|
||
3. 令 `C` 为目标柱、`A` 为缓冲柱,将两个圆盘从 `B` 移至 `C` 。
|
||
|
||
=== "<1>"
|
||
![规模为 3 的问题的解](hanota_problem.assets/hanota_f3_step1.png)
|
||
|
||
=== "<2>"
|
||
![hanota_f3_step2](hanota_problem.assets/hanota_f3_step2.png)
|
||
|
||
=== "<3>"
|
||
![hanota_f3_step3](hanota_problem.assets/hanota_f3_step3.png)
|
||
|
||
=== "<4>"
|
||
![hanota_f3_step4](hanota_problem.assets/hanota_f3_step4.png)
|
||
|
||
从本质上看,**我们将问题 $f(3)$ 划分为两个子问题 $f(2)$ 和一个子问题 $f(1)$** 。按顺序解决这三个子问题之后,原问题随之得到解决。这说明子问题是独立的,而且解可以合并。
|
||
|
||
至此,我们可总结出下图所示的解决汉诺塔问题的分治策略:将原问题 $f(n)$ 划分为两个子问题 $f(n-1)$ 和一个子问题 $f(1)$ ,并按照以下顺序解决这三个子问题。
|
||
|
||
1. 将 $n-1$ 个圆盘借助 `C` 从 `A` 移至 `B` 。
|
||
2. 将剩余 $1$ 个圆盘从 `A` 直接移至 `C` 。
|
||
3. 将 $n-1$ 个圆盘借助 `A` 从 `B` 移至 `C` 。
|
||
|
||
对于这两个子问题 $f(n-1)$ ,**可以通过相同的方式进行递归划分**,直至达到最小子问题 $f(1)$ 。而 $f(1)$ 的解是已知的,只需一次移动操作即可。
|
||
|
||
![解决汉诺塔问题的分治策略](hanota_problem.assets/hanota_divide_and_conquer.png)
|
||
|
||
### 代码实现
|
||
|
||
在代码中,我们声明一个递归函数 `dfs(i, src, buf, tar)` ,它的作用是将柱 `src` 顶部的 $i$ 个圆盘借助缓冲柱 `buf` 移动至目标柱 `tar` :
|
||
|
||
```src
|
||
[file]{hanota}-[class]{}-[func]{solve_hanota}
|
||
```
|
||
|
||
如下图所示,汉诺塔问题形成一棵高度为 $n$ 的递归树,每个节点代表一个子问题,对应一个开启的 `dfs()` 函数,**因此时间复杂度为 $O(2^n)$ ,空间复杂度为 $O(n)$** 。
|
||
|
||
![汉诺塔问题的递归树](hanota_problem.assets/hanota_recursive_tree.png)
|
||
|
||
!!! quote
|
||
|
||
汉诺塔问题源自一个古老的传说。在古印度的一个寺庙里,僧侣们有三根高大的钻石柱子,以及 $64$ 个大小不一的金圆盘。僧侣们不断地移动圆盘,他们相信在最后一个圆盘被正确放置的那一刻,这个世界就会结束。
|
||
|
||
然而,即使僧侣们每秒钟移动一次,总共需要大约 $2^{64} \approx 1.84×10^{19}$ 秒,合约 $5850$ 亿年,远远超过了现在对宇宙年龄的估计。所以,倘若这个传说是真的,我们应该不需要担心世界末日的到来。
|