hello-algo/chapter_data_structure/data_and_memory.md
2023-04-10 03:12:02 +08:00

219 lines
10 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
comments: true
---
# 3.1.   数据与内存
## 3.1.1.   基本数据类型
谈及计算机中的数据我们会想到文本、图片、视频、语音、3D 模型等各种形式。尽管这些数据的组织形式各异,但它们都由各种基本数据类型构成。
**「基本数据类型」是 CPU 可以直接进行运算的类型,在算法中直接被使用**。
- 「整数」按照不同的长度分为 byte, short, int, long 。在满足取值范围的前提下,我们应该尽量选取较短的整数类型,以减小内存空间占用;
- 「浮点数」表示小数,按长度分为 float, double ,选用规则与整数相同。
- 「字符」在计算机中以字符集形式保存char 的值实际上是数字,代表字符集中的编号,计算机通过字符集查表完成编号到字符的转换。
- 「布尔」代表逻辑中的“是”与“否”,其占用空间需根据编程语言确定。
<div class="center-table" markdown>
| 类别 | 符号 | 占用空间 | 取值范围 | 默认值 |
| ------ | ----------- | ----------------- | ---------------------------------------------- | -------------- |
| 整数 | byte | 1 byte | $-2^7$ ~ $2^7 - 1$ ( $-128$ ~ $127$ ) | $0$ |
| | short | 2 bytes | $-2^{15}$ ~ $2^{15} - 1$ | $0$ |
| | **int** | 4 bytes | $-2^{31}$ ~ $2^{31} - 1$ | $0$ |
| | long | 8 bytes | $-2^{63}$ ~ $2^{63} - 1$ | $0$ |
| 浮点数 | **float** | 4 bytes | $-3.4 \times 10^{38}$ ~ $3.4 \times 10^{38}$ | $0.0$ f |
| | double | 8 bytes | $-1.7 \times 10^{308}$ ~ $1.7 \times 10^{308}$ | $0.0$ |
| 字符 | **char** | 2 bytes / 1 byte | $0$ ~ $2^{16} - 1$ | $0$ |
| 布尔 | **bool** | 1 byte / 1 bit | $\text{true}$ 或 $\text{false}$ | $\text{false}$ |
</div>
以上表格中,加粗项在算法题中最为常用。此表格无需硬背,大致理解即可,需要时可以通过查表来回忆。
### 整数表示方式
整数的取值范围取决于变量使用的内存长度即字节或比特数。在计算机中1 字节 (byte) = 8 比特 (bit)1 比特即 1 个二进制位。以 int 类型为例:
1. 整数类型 int 占用 4 bytes = 32 bits ,可以表示 $2^{32}$ 个不同的数字;
2. 将最高位视为符号位,$0$ 代表正数,$1$ 代表负数,一共可表示 $2^{31}$ 个正数和 $2^{31}$ 个负数;
3. 当所有 bits 为 0 时代表数字 $0$ ,从零开始增大,可得最大正数为 $2^{31} - 1$
4. 剩余 $2^{31}$ 个数字全部用来表示负数,因此最小负数为 $-2^{31}$ ;具体细节涉及“源码、反码、补码”的相关知识,有兴趣的同学可以查阅学习;
其他整数类型 byte, short, long 的取值范围的计算方法与 int 类似,在此不再赘述。
### 浮点数表示方式 *
!!! note
本书中,标题后的 * 符号代表选读章节。如果你觉得理解困难,建议先跳过,等学完必读章节后再单独攻克。
细心的你可能会发现int 和 float 长度相同,都是 4 bytes但为什么 float 的取值范围远大于 int ?按理说 float 需要表示小数,取值范围应该变小才对。
实际上,这是因为浮点数 float 采用了不同的表示方式。根据 IEEE 754 标准32-bit 长度的 float 由以下部分构成:
- 符号位 $\mathrm{S}$ :占 1 bit
- 指数位 $\mathrm{E}$ :占 8 bits
- 分数位 $\mathrm{N}$ :占 24 bits ,其中 23 位显式存储;
设 32-bit 二进制数的第 $i$ 位为 $b_i$ ,则 float 值的计算方法定义为:
$$
\text { val } = (-1)^{b_{31}} \times 2^{\left(b_{30} b_{29} \ldots b_{23}\right)_2-127} \times\left(1 . b_{22} b_{21} \ldots b_0\right)_2
$$
转化到十进制下的计算公式为
$$
\text { val }=(-1)^{\mathrm{S}} \times 2^{\mathrm{E} -127} \times (1 + \mathrm{N})
$$
其中各项的取值范围为
$$
\begin{aligned}
\mathrm{S} \in & \{ 0, 1\} , \quad \mathrm{E} \in \{ 1, 2, \dots, 254 \} \newline
(1 + \mathrm{N}) = & (1 + \sum_{i=1}^{23} b_{23-i} 2^{-i}) \subset [1, 2 - 2^{-23}]
\end{aligned}
$$
![IEEE 754 标准下的 float 表示方式](data_and_memory.assets/ieee_754_float.png)
<p align="center"> Fig. IEEE 754 标准下的 float 表示方式 </p>
以上图为例,$\mathrm{S} = 0$ $\mathrm{E} = 124$ $\mathrm{N} = 2^{-2} + 2^{-3} = 0.375$ ,易得
$$
\text { val } = (-1)^0 \times 2^{124 - 127} \times (1 + 0.375) = 0.171875
$$
现在我们可以回答最初的问题:**float 的表示方式包含指数位,导致其取值范围远大于 int** 。根据以上计算float 可表示的最大正数为 $2^{254 - 127} \times (2 - 2^{-23}) \approx 3.4 \times 10^{38}$ ,切换符号位便可得到最小负数。
**尽管浮点数 float 扩展了取值范围,但其副作用是牺牲了精度**。整数类型 int 将全部 32 位用于表示数字,数字是均匀分布的;而由于指数位的存在,浮点数 float 的数值越大,相邻两个数字之间的差值就会趋向越大。
进一步地,指数位 $E = 0$ 和 $E = 255$ 具有特殊含义,**用于表示零、无穷大、$\mathrm{NaN}$ 等**。
<div class="center-table" markdown>
| 指数位 E | 分数位 $\mathrm{N} = 0$ | 分数位 $\mathrm{N} \ne 0$ | 计算公式 |
| ------------------ | ----------------------- | ---------------------------- | ------------------------------------------------------------ |
| $0$ | $\pm 0$ | 次正规数 | $(-1)^{\mathrm{S}} \times 2^{-126} \times (0.\mathrm{N})$ |
| $1, 2, \dots, 254$ | 正规数 | 正规数 | $(-1)^{\mathrm{S}} \times 2^{(\mathrm{E} -127)} \times (1.\mathrm{N})$ |
| $255$ | $\pm \infty$ | $\mathrm{NaN}$ | |
</div>
特别地,次正规数显著提升了浮点数的精度,这是因为:
- 最小正正规数为 $2^{-126} \approx 1.18 \times 10^{-38}$
- 最小正次正规数为 $2^{-126} \times 2^{-23} \approx 1.4 \times 10^{-45}$
双精度 double 也采用类似 float 的表示方法,此处不再详述。
### 基本数据类型与数据结构的关系
我们知道,**数据结构是在计算机中组织与存储数据的方式**,它的核心是“结构”,而非“数据”。如果想要表示“一排数字”,我们自然会想到使用「数组」数据结构。数组的存储方式可以表示数字的相邻关系、顺序关系,但至于具体存储的是整数 int 、小数 float 、还是字符 char ,则与“数据结构”无关。换句话说,基本数据类型提供了数据的“内容类型”,而数据结构提供了数据的“组织方式”。
=== "Java"
```java title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
int[] numbers = new int[5];
float[] decimals = new float[5];
char[] characters = new char[5];
boolean[] booleans = new boolean[5];
```
=== "C++"
```cpp title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
int numbers[5];
float decimals[5];
char characters[5];
bool booleans[5];
```
=== "Python"
```python title=""
# Python 的 list 可以自由存储各种基本数据类型和对象
list = [0, 0.0, 'a', False]
```
=== "Go"
```go title=""
// 使用多种「基本数据类型」来初始化「数组」
var numbers = [5]int{}
var decimals = [5]float64{}
var characters = [5]byte{}
var booleans = [5]bool{}
```
=== "JavaScript"
```javascript title=""
/* JavaScript 的数组可以自由存储各种基本数据类型和对象 */
const array = [0, 0.0, 'a', false];
```
=== "TypeScript"
```typescript title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
const numbers: number[] = [];
const characters: string[] = [];
const booleans: boolean[] = [];
```
=== "C"
```c title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
int numbers[10];
float decimals[10];
char characters[10];
bool booleans[10];
```
=== "C#"
```csharp title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
int[] numbers = new int[5];
float[] decimals = new float[5];
char[] characters = new char[5];
bool[] booleans = new bool[5];
```
=== "Swift"
```swift title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
let numbers = Array(repeating: Int(), count: 5)
let decimals = Array(repeating: Double(), count: 5)
let characters = Array(repeating: Character("a"), count: 5)
let booleans = Array(repeating: Bool(), count: 5)
```
=== "Zig"
```zig title=""
```
## 3.1.2. &nbsp; 计算机内存
在计算机中,内存和硬盘是两种主要的存储硬件设备。「硬盘」主要用于长期存储数据,容量较大(通常可达到 TB 级别)、速度较慢。「内存」用于运行程序时暂存数据,速度较快,但容量较小(通常为 GB 级别)。
**在算法运行过程中,相关数据都存储在内存中**。下图展示了一个计算机内存条,其中每个黑色方块都包含一块内存空间。我们可以将内存想象成一个巨大的 Excel 表格,其中每个单元格都可以存储 1 byte 的数据,在算法运行时,所有数据都被存储在这些单元格中。
**系统通过「内存地址 Memory Location」来访问目标内存位置的数据**。计算机根据特定规则为表格中的每个单元格分配编号,确保每个内存空间都有唯一的内存地址。有了这些地址,程序便可以访问内存中的数据。
![内存条、内存空间、内存地址](data_and_memory.assets/computer_memory_location.png)
<p align="center"> Fig. 内存条、内存空间、内存地址 </p>
**在数据结构与算法的设计中,内存资源是一个重要的考虑因素**。内存是所有程序的共享资源,当内存被某个程序占用时,其他程序无法同时使用。我们需要根据剩余内存资源的实际情况来设计算法。例如,算法所占用的内存峰值不应超过系统剩余空闲内存;如果运行的程序很多并且缺少大量连续的内存空间,那么所选用的数据结构必须能够存储在离散的内存空间内。