mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 03:26:29 +08:00
431 lines
12 KiB
Markdown
Executable file
431 lines
12 KiB
Markdown
Executable file
---
|
|
comments: true
|
|
---
|
|
|
|
# 7.2 Binary tree traversal
|
|
|
|
From a physical structure perspective, a tree is a data structure based on linked lists. Hence, its traversal method involves accessing nodes one by one through pointers. However, a tree is a non-linear data structure, which makes traversing a tree more complex than traversing a linked list, requiring the assistance of search algorithms.
|
|
|
|
The common traversal methods for binary trees include level-order traversal, pre-order traversal, in-order traversal, and post-order traversal.
|
|
|
|
## 7.2.1 Level-order traversal
|
|
|
|
As shown in Figure 7-9, <u>level-order traversal</u> traverses the binary tree from top to bottom, layer by layer. Within each level, it visits nodes from left to right.
|
|
|
|
Level-order traversal is essentially a type of <u>breadth-first traversal</u>, also known as <u>breadth-first search (BFS)</u>, which embodies a "circumferentially outward expanding" layer-by-layer traversal method.
|
|
|
|
![Level-order traversal of a binary tree](binary_tree_traversal.assets/binary_tree_bfs.png){ class="animation-figure" }
|
|
|
|
<p align="center"> Figure 7-9 Level-order traversal of a binary tree </p>
|
|
|
|
### 1. Code implementation
|
|
|
|
Breadth-first traversal is usually implemented with the help of a "queue". The queue follows the "first in, first out" rule, while breadth-first traversal follows the "layer-by-layer progression" rule, the underlying ideas of the two are consistent. The implementation code is as follows:
|
|
|
|
=== "Python"
|
|
|
|
```python title="binary_tree_bfs.py"
|
|
def level_order(root: TreeNode | None) -> list[int]:
|
|
"""Level-order traversal"""
|
|
# Initialize queue, add root node
|
|
queue: deque[TreeNode] = deque()
|
|
queue.append(root)
|
|
# Initialize a list to store the traversal sequence
|
|
res = []
|
|
while queue:
|
|
node: TreeNode = queue.popleft() # Queue dequeues
|
|
res.append(node.val) # Save node value
|
|
if node.left is not None:
|
|
queue.append(node.left) # Left child node enqueues
|
|
if node.right is not None:
|
|
queue.append(node.right) # Right child node enqueues
|
|
return res
|
|
```
|
|
|
|
=== "C++"
|
|
|
|
```cpp title="binary_tree_bfs.cpp"
|
|
/* Level-order traversal */
|
|
vector<int> levelOrder(TreeNode *root) {
|
|
// Initialize queue, add root node
|
|
queue<TreeNode *> queue;
|
|
queue.push(root);
|
|
// Initialize a list to store the traversal sequence
|
|
vector<int> vec;
|
|
while (!queue.empty()) {
|
|
TreeNode *node = queue.front();
|
|
queue.pop(); // Queue dequeues
|
|
vec.push_back(node->val); // Save node value
|
|
if (node->left != nullptr)
|
|
queue.push(node->left); // Left child node enqueues
|
|
if (node->right != nullptr)
|
|
queue.push(node->right); // Right child node enqueues
|
|
}
|
|
return vec;
|
|
}
|
|
```
|
|
|
|
=== "Java"
|
|
|
|
```java title="binary_tree_bfs.java"
|
|
/* Level-order traversal */
|
|
List<Integer> levelOrder(TreeNode root) {
|
|
// Initialize queue, add root node
|
|
Queue<TreeNode> queue = new LinkedList<>();
|
|
queue.add(root);
|
|
// Initialize a list to store the traversal sequence
|
|
List<Integer> list = new ArrayList<>();
|
|
while (!queue.isEmpty()) {
|
|
TreeNode node = queue.poll(); // Queue dequeues
|
|
list.add(node.val); // Save node value
|
|
if (node.left != null)
|
|
queue.offer(node.left); // Left child node enqueues
|
|
if (node.right != null)
|
|
queue.offer(node.right); // Right child node enqueues
|
|
}
|
|
return list;
|
|
}
|
|
```
|
|
|
|
=== "C#"
|
|
|
|
```csharp title="binary_tree_bfs.cs"
|
|
[class]{binary_tree_bfs}-[func]{LevelOrder}
|
|
```
|
|
|
|
=== "Go"
|
|
|
|
```go title="binary_tree_bfs.go"
|
|
[class]{}-[func]{levelOrder}
|
|
```
|
|
|
|
=== "Swift"
|
|
|
|
```swift title="binary_tree_bfs.swift"
|
|
[class]{}-[func]{levelOrder}
|
|
```
|
|
|
|
=== "JS"
|
|
|
|
```javascript title="binary_tree_bfs.js"
|
|
[class]{}-[func]{levelOrder}
|
|
```
|
|
|
|
=== "TS"
|
|
|
|
```typescript title="binary_tree_bfs.ts"
|
|
[class]{}-[func]{levelOrder}
|
|
```
|
|
|
|
=== "Dart"
|
|
|
|
```dart title="binary_tree_bfs.dart"
|
|
[class]{}-[func]{levelOrder}
|
|
```
|
|
|
|
=== "Rust"
|
|
|
|
```rust title="binary_tree_bfs.rs"
|
|
[class]{}-[func]{level_order}
|
|
```
|
|
|
|
=== "C"
|
|
|
|
```c title="binary_tree_bfs.c"
|
|
[class]{}-[func]{levelOrder}
|
|
```
|
|
|
|
=== "Kotlin"
|
|
|
|
```kotlin title="binary_tree_bfs.kt"
|
|
[class]{}-[func]{levelOrder}
|
|
```
|
|
|
|
=== "Ruby"
|
|
|
|
```ruby title="binary_tree_bfs.rb"
|
|
[class]{}-[func]{level_order}
|
|
```
|
|
|
|
=== "Zig"
|
|
|
|
```zig title="binary_tree_bfs.zig"
|
|
[class]{}-[func]{levelOrder}
|
|
```
|
|
|
|
### 2. Complexity analysis
|
|
|
|
- **Time complexity is $O(n)$**: All nodes are visited once, taking $O(n)$ time, where $n$ is the number of nodes.
|
|
- **Space complexity is $O(n)$**: In the worst case, i.e., a full binary tree, before traversing to the bottom level, the queue can contain at most $(n + 1) / 2$ nodes simultaneously, occupying $O(n)$ space.
|
|
|
|
## 7.2.2 Preorder, in-order, and post-order traversal
|
|
|
|
Correspondingly, pre-order, in-order, and post-order traversal all belong to <u>depth-first traversal</u>, also known as <u>depth-first search (DFS)</u>, which embodies a "proceed to the end first, then backtrack and continue" traversal method.
|
|
|
|
Figure 7-10 shows the working principle of performing a depth-first traversal on a binary tree. **Depth-first traversal is like "walking" around the entire binary tree**, encountering three positions at each node, corresponding to pre-order, in-order, and post-order traversal.
|
|
|
|
![Preorder, in-order, and post-order traversal of a binary search tree](binary_tree_traversal.assets/binary_tree_dfs.png){ class="animation-figure" }
|
|
|
|
<p align="center"> Figure 7-10 Preorder, in-order, and post-order traversal of a binary search tree </p>
|
|
|
|
### 1. Code implementation
|
|
|
|
Depth-first search is usually implemented based on recursion:
|
|
|
|
=== "Python"
|
|
|
|
```python title="binary_tree_dfs.py"
|
|
def pre_order(root: TreeNode | None):
|
|
"""Pre-order traversal"""
|
|
if root is None:
|
|
return
|
|
# Visit priority: root node -> left subtree -> right subtree
|
|
res.append(root.val)
|
|
pre_order(root=root.left)
|
|
pre_order(root=root.right)
|
|
|
|
def in_order(root: TreeNode | None):
|
|
"""In-order traversal"""
|
|
if root is None:
|
|
return
|
|
# Visit priority: left subtree -> root node -> right subtree
|
|
in_order(root=root.left)
|
|
res.append(root.val)
|
|
in_order(root=root.right)
|
|
|
|
def post_order(root: TreeNode | None):
|
|
"""Post-order traversal"""
|
|
if root is None:
|
|
return
|
|
# Visit priority: left subtree -> right subtree -> root node
|
|
post_order(root=root.left)
|
|
post_order(root=root.right)
|
|
res.append(root.val)
|
|
```
|
|
|
|
=== "C++"
|
|
|
|
```cpp title="binary_tree_dfs.cpp"
|
|
/* Pre-order traversal */
|
|
void preOrder(TreeNode *root) {
|
|
if (root == nullptr)
|
|
return;
|
|
// Visit priority: root node -> left subtree -> right subtree
|
|
vec.push_back(root->val);
|
|
preOrder(root->left);
|
|
preOrder(root->right);
|
|
}
|
|
|
|
/* In-order traversal */
|
|
void inOrder(TreeNode *root) {
|
|
if (root == nullptr)
|
|
return;
|
|
// Visit priority: left subtree -> root node -> right subtree
|
|
inOrder(root->left);
|
|
vec.push_back(root->val);
|
|
inOrder(root->right);
|
|
}
|
|
|
|
/* Post-order traversal */
|
|
void postOrder(TreeNode *root) {
|
|
if (root == nullptr)
|
|
return;
|
|
// Visit priority: left subtree -> right subtree -> root node
|
|
postOrder(root->left);
|
|
postOrder(root->right);
|
|
vec.push_back(root->val);
|
|
}
|
|
```
|
|
|
|
=== "Java"
|
|
|
|
```java title="binary_tree_dfs.java"
|
|
/* Pre-order traversal */
|
|
void preOrder(TreeNode root) {
|
|
if (root == null)
|
|
return;
|
|
// Visit priority: root node -> left subtree -> right subtree
|
|
list.add(root.val);
|
|
preOrder(root.left);
|
|
preOrder(root.right);
|
|
}
|
|
|
|
/* In-order traversal */
|
|
void inOrder(TreeNode root) {
|
|
if (root == null)
|
|
return;
|
|
// Visit priority: left subtree -> root node -> right subtree
|
|
inOrder(root.left);
|
|
list.add(root.val);
|
|
inOrder(root.right);
|
|
}
|
|
|
|
/* Post-order traversal */
|
|
void postOrder(TreeNode root) {
|
|
if (root == null)
|
|
return;
|
|
// Visit priority: left subtree -> right subtree -> root node
|
|
postOrder(root.left);
|
|
postOrder(root.right);
|
|
list.add(root.val);
|
|
}
|
|
```
|
|
|
|
=== "C#"
|
|
|
|
```csharp title="binary_tree_dfs.cs"
|
|
[class]{binary_tree_dfs}-[func]{PreOrder}
|
|
|
|
[class]{binary_tree_dfs}-[func]{InOrder}
|
|
|
|
[class]{binary_tree_dfs}-[func]{PostOrder}
|
|
```
|
|
|
|
=== "Go"
|
|
|
|
```go title="binary_tree_dfs.go"
|
|
[class]{}-[func]{preOrder}
|
|
|
|
[class]{}-[func]{inOrder}
|
|
|
|
[class]{}-[func]{postOrder}
|
|
```
|
|
|
|
=== "Swift"
|
|
|
|
```swift title="binary_tree_dfs.swift"
|
|
[class]{}-[func]{preOrder}
|
|
|
|
[class]{}-[func]{inOrder}
|
|
|
|
[class]{}-[func]{postOrder}
|
|
```
|
|
|
|
=== "JS"
|
|
|
|
```javascript title="binary_tree_dfs.js"
|
|
[class]{}-[func]{preOrder}
|
|
|
|
[class]{}-[func]{inOrder}
|
|
|
|
[class]{}-[func]{postOrder}
|
|
```
|
|
|
|
=== "TS"
|
|
|
|
```typescript title="binary_tree_dfs.ts"
|
|
[class]{}-[func]{preOrder}
|
|
|
|
[class]{}-[func]{inOrder}
|
|
|
|
[class]{}-[func]{postOrder}
|
|
```
|
|
|
|
=== "Dart"
|
|
|
|
```dart title="binary_tree_dfs.dart"
|
|
[class]{}-[func]{preOrder}
|
|
|
|
[class]{}-[func]{inOrder}
|
|
|
|
[class]{}-[func]{postOrder}
|
|
```
|
|
|
|
=== "Rust"
|
|
|
|
```rust title="binary_tree_dfs.rs"
|
|
[class]{}-[func]{pre_order}
|
|
|
|
[class]{}-[func]{in_order}
|
|
|
|
[class]{}-[func]{post_order}
|
|
```
|
|
|
|
=== "C"
|
|
|
|
```c title="binary_tree_dfs.c"
|
|
[class]{}-[func]{preOrder}
|
|
|
|
[class]{}-[func]{inOrder}
|
|
|
|
[class]{}-[func]{postOrder}
|
|
```
|
|
|
|
=== "Kotlin"
|
|
|
|
```kotlin title="binary_tree_dfs.kt"
|
|
[class]{}-[func]{preOrder}
|
|
|
|
[class]{}-[func]{inOrder}
|
|
|
|
[class]{}-[func]{postOrder}
|
|
```
|
|
|
|
=== "Ruby"
|
|
|
|
```ruby title="binary_tree_dfs.rb"
|
|
[class]{}-[func]{pre_order}
|
|
|
|
[class]{}-[func]{in_order}
|
|
|
|
[class]{}-[func]{post_order}
|
|
```
|
|
|
|
=== "Zig"
|
|
|
|
```zig title="binary_tree_dfs.zig"
|
|
[class]{}-[func]{preOrder}
|
|
|
|
[class]{}-[func]{inOrder}
|
|
|
|
[class]{}-[func]{postOrder}
|
|
```
|
|
|
|
!!! tip
|
|
|
|
Depth-first search can also be implemented based on iteration, interested readers can study this on their own.
|
|
|
|
Figure 7-11 shows the recursive process of pre-order traversal of a binary tree, which can be divided into two opposite parts: "recursion" and "return".
|
|
|
|
1. "Recursion" means starting a new method, the program accesses the next node in this process.
|
|
2. "Return" means the function returns, indicating the current node has been fully accessed.
|
|
|
|
=== "<1>"
|
|
![The recursive process of pre-order traversal](binary_tree_traversal.assets/preorder_step1.png){ class="animation-figure" }
|
|
|
|
=== "<2>"
|
|
![preorder_step2](binary_tree_traversal.assets/preorder_step2.png){ class="animation-figure" }
|
|
|
|
=== "<3>"
|
|
![preorder_step3](binary_tree_traversal.assets/preorder_step3.png){ class="animation-figure" }
|
|
|
|
=== "<4>"
|
|
![preorder_step4](binary_tree_traversal.assets/preorder_step4.png){ class="animation-figure" }
|
|
|
|
=== "<5>"
|
|
![preorder_step5](binary_tree_traversal.assets/preorder_step5.png){ class="animation-figure" }
|
|
|
|
=== "<6>"
|
|
![preorder_step6](binary_tree_traversal.assets/preorder_step6.png){ class="animation-figure" }
|
|
|
|
=== "<7>"
|
|
![preorder_step7](binary_tree_traversal.assets/preorder_step7.png){ class="animation-figure" }
|
|
|
|
=== "<8>"
|
|
![preorder_step8](binary_tree_traversal.assets/preorder_step8.png){ class="animation-figure" }
|
|
|
|
=== "<9>"
|
|
![preorder_step9](binary_tree_traversal.assets/preorder_step9.png){ class="animation-figure" }
|
|
|
|
=== "<10>"
|
|
![preorder_step10](binary_tree_traversal.assets/preorder_step10.png){ class="animation-figure" }
|
|
|
|
=== "<11>"
|
|
![preorder_step11](binary_tree_traversal.assets/preorder_step11.png){ class="animation-figure" }
|
|
|
|
<p align="center"> Figure 7-11 The recursive process of pre-order traversal </p>
|
|
|
|
### 2. Complexity analysis
|
|
|
|
- **Time complexity is $O(n)$**: All nodes are visited once, using $O(n)$ time.
|
|
- **Space complexity is $O(n)$**: In the worst case, i.e., the tree degenerates into a linked list, the recursion depth reaches $n$, the system occupies $O(n)$ stack frame space.
|