mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 14:16:29 +08:00
410 lines
12 KiB
Markdown
410 lines
12 KiB
Markdown
---
|
||
comments: true
|
||
---
|
||
|
||
# 二叉树遍历
|
||
|
||
非线性数据结构的遍历操作比线性数据结构更加复杂,往往需要使用搜索算法来实现。常见的二叉树遍历方式有层序遍历、前序遍历、中序遍历、后序遍历。
|
||
|
||
## 层序遍历
|
||
|
||
「层序遍历 Hierarchical-Order Traversal」从顶至底、一层一层地遍历二叉树,并在每层中按照从左到右的顺序访问结点。
|
||
|
||
层序遍历本质上是「广度优先搜索 Breadth-First Traversal」,其体现着一种“一圈一圈向外”的层进遍历方式。
|
||
|
||
![binary_tree_bfs](binary_tree_traversal.assets/binary_tree_bfs.png)
|
||
|
||
<p align="center"> Fig. 二叉树的层序遍历 </p>
|
||
|
||
广度优先遍历一般借助「队列」来实现。队列的规则是“先进先出”,广度优先遍历的规则是 ”一层层平推“ ,两者背后的思想是一致的。
|
||
|
||
=== "Java"
|
||
|
||
```java title="binary_tree_bfs.java"
|
||
/* 层序遍历 */
|
||
List<Integer> hierOrder(TreeNode root) {
|
||
// 初始化队列,加入根结点
|
||
Queue<TreeNode> queue = new LinkedList<>() {{ add(root); }};
|
||
// 初始化一个列表,用于保存遍历序列
|
||
List<Integer> list = new ArrayList<>();
|
||
while (!queue.isEmpty()) {
|
||
TreeNode node = queue.poll(); // 队列出队
|
||
list.add(node.val); // 保存结点值
|
||
if (node.left != null)
|
||
queue.offer(node.left); // 左子结点入队
|
||
if (node.right != null)
|
||
queue.offer(node.right); // 右子结点入队
|
||
}
|
||
return list;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="binary_tree_bfs.cpp"
|
||
/* 层序遍历 */
|
||
vector<int> hierOrder(TreeNode* root) {
|
||
// 初始化队列,加入根结点
|
||
queue<TreeNode*> queue;
|
||
queue.push(root);
|
||
// 初始化一个列表,用于保存遍历序列
|
||
vector<int> vec;
|
||
while (!queue.empty()) {
|
||
TreeNode* node = queue.front();
|
||
queue.pop(); // 队列出队
|
||
vec.push_back(node->val); // 保存结点
|
||
if (node->left != nullptr)
|
||
queue.push(node->left); // 左子结点入队
|
||
if (node->right != nullptr)
|
||
queue.push(node->right); // 右子结点入队
|
||
}
|
||
return vec;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="binary_tree_bfs.py"
|
||
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="binary_tree_bfs.go"
|
||
/* 层序遍历 */
|
||
func levelOrder(root *TreeNode) []int {
|
||
// 初始化队列,加入根结点
|
||
queue := list.New()
|
||
queue.PushBack(root)
|
||
// 初始化一个切片,用于保存遍历序列
|
||
nums := make([]int, 0)
|
||
for queue.Len() > 0 {
|
||
// poll
|
||
node := queue.Remove(queue.Front()).(*TreeNode)
|
||
// 保存结点
|
||
nums = append(nums, node.Val)
|
||
if node.Left != nil {
|
||
// 左子结点入队
|
||
queue.PushBack(node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
// 右子结点入队
|
||
queue.PushBack(node.Right)
|
||
}
|
||
}
|
||
return nums
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```js title="binary_tree_bfs.js"
|
||
/* 层序遍历 */
|
||
function hierOrder(root) {
|
||
// 初始化队列,加入根结点
|
||
let queue = [root];
|
||
// 初始化一个列表,用于保存遍历序列
|
||
let list = [];
|
||
while (queue.length) {
|
||
let node = queue.shift(); // 队列出队
|
||
list.push(node.val); // 保存结点
|
||
if (node.left)
|
||
queue.push(node.left); // 左子结点入队
|
||
if (node.right)
|
||
queue.push(node.right); // 右子结点入队
|
||
}
|
||
return list;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="binary_tree_bfs.ts"
|
||
/* 层序遍历 */
|
||
function hierOrder(root: TreeNode | null): number[] {
|
||
// 初始化队列,加入根结点
|
||
const queue = [root];
|
||
// 初始化一个列表,用于保存遍历序列
|
||
const list: number[] = [];
|
||
while (queue.length) {
|
||
let node = queue.shift() as TreeNode; // 队列出队
|
||
list.push(node.val); // 保存结点
|
||
if (node.left) {
|
||
queue.push(node.left); // 左子结点入队
|
||
}
|
||
if (node.right) {
|
||
queue.push(node.right); // 右子结点入队
|
||
}
|
||
}
|
||
return list;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="binary_tree_bfs.c"
|
||
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="binary_tree_bfs.cs"
|
||
/* 层序遍历 */
|
||
public List<int?> hierOrder(TreeNode root)
|
||
{
|
||
// 初始化队列,加入根结点
|
||
Queue<TreeNode> queue = new();
|
||
queue.Enqueue(root);
|
||
// 初始化一个列表,用于保存遍历序列
|
||
List<int> list = new();
|
||
while (queue.Count != 0)
|
||
{
|
||
TreeNode node = queue.Dequeue(); // 队列出队
|
||
list.Add(node.val); // 保存结点值
|
||
if (node.left != null)
|
||
queue.Enqueue(node.left); // 左子结点入队
|
||
if (node.right != null)
|
||
queue.Enqueue(node.right); // 右子结点入队
|
||
}
|
||
return list;
|
||
}
|
||
|
||
```
|
||
|
||
## 前序、中序、后序遍历
|
||
|
||
相对地,前、中、后序遍历皆属于「深度优先遍历 Depth-First Traversal」,其体现着一种“先走到尽头,再回头继续”的回溯遍历方式。
|
||
|
||
如下图所示,左侧是深度优先遍历的的示意图,右上方是对应的递归实现代码。深度优先遍历就像是绕着整个二叉树的外围“走”一圈,走的过程中,在每个结点都会遇到三个位置,分别对应前序遍历、中序遍历、后序遍历。
|
||
|
||
![binary_tree_dfs](binary_tree_traversal.assets/binary_tree_dfs.png)
|
||
|
||
<p align="center"> Fig. 二叉树的前 / 中 / 后序遍历 </p>
|
||
|
||
<div class="center-table" markdown>
|
||
|
||
| 位置 | 含义 | 此处访问结点时对应 |
|
||
| ---------- | ------------------------------------ | ----------------------------- |
|
||
| 橙色圆圈处 | 刚进入此结点,即将访问该结点的左子树 | 前序遍历 Pre-Order Traversal |
|
||
| 蓝色圆圈处 | 已访问完左子树,即将访问右子树 | 中序遍历 In-Order Traversal |
|
||
| 紫色圆圈处 | 已访问完左子树和右子树,即将返回 | 后序遍历 Post-Order Traversal |
|
||
|
||
</div>
|
||
|
||
=== "Java"
|
||
|
||
```java title="binary_tree_dfs.java"
|
||
/* 前序遍历 */
|
||
void preOrder(TreeNode root) {
|
||
if (root == null) return;
|
||
// 访问优先级:根结点 -> 左子树 -> 右子树
|
||
list.add(root.val);
|
||
preOrder(root.left);
|
||
preOrder(root.right);
|
||
}
|
||
|
||
/* 中序遍历 */
|
||
void inOrder(TreeNode root) {
|
||
if (root == null) return;
|
||
// 访问优先级:左子树 -> 根结点 -> 右子树
|
||
inOrder(root.left);
|
||
list.add(root.val);
|
||
inOrder(root.right);
|
||
}
|
||
|
||
/* 后序遍历 */
|
||
void postOrder(TreeNode root) {
|
||
if (root == null) return;
|
||
// 访问优先级:左子树 -> 右子树 -> 根结点
|
||
postOrder(root.left);
|
||
postOrder(root.right);
|
||
list.add(root.val);
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="binary_tree_dfs.cpp"
|
||
/* 前序遍历 */
|
||
void preOrder(TreeNode* root) {
|
||
if (root == nullptr) return;
|
||
// 访问优先级:根结点 -> 左子树 -> 右子树
|
||
vec.push_back(root->val);
|
||
preOrder(root->left);
|
||
preOrder(root->right);
|
||
}
|
||
|
||
/* 中序遍历 */
|
||
void inOrder(TreeNode* root) {
|
||
if (root == nullptr) return;
|
||
// 访问优先级:左子树 -> 根结点 -> 右子树
|
||
inOrder(root->left);
|
||
vec.push_back(root->val);
|
||
inOrder(root->right);
|
||
}
|
||
|
||
/* 后序遍历 */
|
||
void postOrder(TreeNode* root) {
|
||
if (root == nullptr) return;
|
||
// 访问优先级:左子树 -> 右子树 -> 根结点
|
||
postOrder(root->left);
|
||
postOrder(root->right);
|
||
vec.push_back(root->val);
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="binary_tree_dfs.py"
|
||
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="binary_tree_dfs.go"
|
||
/* 前序遍历 */
|
||
func preOrder(node *TreeNode) {
|
||
if node == nil {
|
||
return
|
||
}
|
||
// 访问优先级:根结点 -> 左子树 -> 右子树
|
||
nums = append(nums, node.Val)
|
||
preOrder(node.Left)
|
||
preOrder(node.Right)
|
||
}
|
||
|
||
/* 中序遍历 */
|
||
func inOrder(node *TreeNode) {
|
||
if node == nil {
|
||
return
|
||
}
|
||
// 访问优先级:左子树 -> 根结点 -> 右子树
|
||
inOrder(node.Left)
|
||
nums = append(nums, node.Val)
|
||
inOrder(node.Right)
|
||
}
|
||
|
||
/* 后序遍历 */
|
||
func postOrder(node *TreeNode) {
|
||
if node == nil {
|
||
return
|
||
}
|
||
// 访问优先级:左子树 -> 右子树 -> 根结点
|
||
postOrder(node.Left)
|
||
postOrder(node.Right)
|
||
nums = append(nums, node.Val)
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```js title="binary_tree_dfs.js"
|
||
/* 前序遍历 */
|
||
function preOrder(root){
|
||
if (root === null) return;
|
||
// 访问优先级:根结点 -> 左子树 -> 右子树
|
||
list.push(root.val);
|
||
preOrder(root.left);
|
||
preOrder(root.right);
|
||
}
|
||
|
||
/* 中序遍历 */
|
||
function inOrder(root) {
|
||
if (root === null) return;
|
||
// 访问优先级:左子树 -> 根结点 -> 右子树
|
||
inOrder(root.left);
|
||
list.push(root.val);
|
||
inOrder(root.right);
|
||
}
|
||
|
||
/* 后序遍历 */
|
||
function postOrder(root) {
|
||
if (root === null) return;
|
||
// 访问优先级:左子树 -> 右子树 -> 根结点
|
||
postOrder(root.left);
|
||
postOrder(root.right);
|
||
list.push(root.val);
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="binary_tree_dfs.ts"
|
||
/* 前序遍历 */
|
||
function preOrder(root: TreeNode | null): void {
|
||
if (root === null) {
|
||
return;
|
||
}
|
||
// 访问优先级:根结点 -> 左子树 -> 右子树
|
||
list.push(root.val);
|
||
preOrder(root.left);
|
||
preOrder(root.right);
|
||
}
|
||
|
||
/* 中序遍历 */
|
||
function inOrder(root: TreeNode | null): void {
|
||
if (root === null) {
|
||
return;
|
||
}
|
||
// 访问优先级:左子树 -> 根结点 -> 右子树
|
||
inOrder(root.left);
|
||
list.push(root.val);
|
||
inOrder(root.right);
|
||
}
|
||
|
||
/* 后序遍历 */
|
||
function postOrder(root: TreeNode | null): void {
|
||
if (root === null) {
|
||
return;
|
||
}
|
||
// 访问优先级:左子树 -> 右子树 -> 根结点
|
||
postOrder(root.left);
|
||
postOrder(root.right);
|
||
list.push(root.val);
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="binary_tree_dfs.c"
|
||
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="binary_tree_dfs.cs"
|
||
/* 前序遍历 */
|
||
void preOrder(TreeNode? root)
|
||
{
|
||
if (root == null) return;
|
||
// 访问优先级:根结点 -> 左子树 -> 右子树
|
||
list.Add(root.val);
|
||
preOrder(root.left);
|
||
preOrder(root.right);
|
||
}
|
||
|
||
/* 中序遍历 */
|
||
void inOrder(TreeNode? root)
|
||
{
|
||
if (root == null) return;
|
||
// 访问优先级:左子树 -> 根结点 -> 右子树
|
||
inOrder(root.left);
|
||
list.Add(root.val);
|
||
inOrder(root.right);
|
||
}
|
||
|
||
/* 后序遍历 */
|
||
void postOrder(TreeNode? root)
|
||
{
|
||
if (root == null) return;
|
||
// 访问优先级:左子树 -> 右子树 -> 根结点
|
||
postOrder(root.left);
|
||
postOrder(root.right);
|
||
list.Add(root.val);
|
||
}
|
||
|
||
```
|
||
|
||
!!! note
|
||
|
||
使用循环一样可以实现前、中、后序遍历,但代码相对繁琐,有兴趣的同学可以自行实现。
|