mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 14:46:28 +08:00
e813b5a0fa
* Fix the logo in the en version * Optimize header color and fix body background color * Update theme switch's name * Fix backfrop-filter on Safari * Update some animation's file name for adding egde when cropping * Re-count the comments number * A bug fix in n_queens_problem.md
183 lines
9 KiB
Markdown
183 lines
9 KiB
Markdown
# 动态规划解题思路
|
||
|
||
上两节介绍了动态规划问题的主要特征,接下来我们一起探究两个更加实用的问题。
|
||
|
||
1. 如何判断一个问题是不是动态规划问题?
|
||
2. 求解动态规划问题该从何处入手,完整步骤是什么?
|
||
|
||
## 问题判断
|
||
|
||
总的来说,如果一个问题包含重叠子问题、最优子结构,并满足无后效性,那么它通常适合用动态规划求解。然而,我们很难从问题描述中直接提取出这些特性。因此我们通常会放宽条件,**先观察问题是否适合使用回溯(穷举)解决**。
|
||
|
||
**适合用回溯解决的问题通常满足“决策树模型”**,这种问题可以使用树形结构来描述,其中每一个节点代表一个决策,每一条路径代表一个决策序列。
|
||
|
||
换句话说,如果问题包含明确的决策概念,并且解是通过一系列决策产生的,那么它就满足决策树模型,通常可以使用回溯来解决。
|
||
|
||
在此基础上,动态规划问题还有一些判断的“加分项”。
|
||
|
||
- 问题包含最大(小)或最多(少)等最优化描述。
|
||
- 问题的状态能够使用一个列表、多维矩阵或树来表示,并且一个状态与其周围的状态存在递推关系。
|
||
|
||
相应地,也存在一些“减分项”。
|
||
|
||
- 问题的目标是找出所有可能的解决方案,而不是找出最优解。
|
||
- 问题描述中有明显的排列组合的特征,需要返回具体的多个方案。
|
||
|
||
如果一个问题满足决策树模型,并具有较为明显的“加分项”,我们就可以假设它是一个动态规划问题,并在求解过程中验证它。
|
||
|
||
## 问题求解步骤
|
||
|
||
动态规划的解题流程会因问题的性质和难度而有所不同,但通常遵循以下步骤:描述决策,定义状态,建立 $dp$ 表,推导状态转移方程,确定边界条件等。
|
||
|
||
为了更形象地展示解题步骤,我们使用一个经典问题“最小路径和”来举例。
|
||
|
||
!!! question
|
||
|
||
给定一个 $n \times m$ 的二维网格 `grid` ,网格中的每个单元格包含一个非负整数,表示该单元格的代价。机器人以左上角单元格为起始点,每次只能向下或者向右移动一步,直至到达右下角单元格。请返回从左上角到右下角的最小路径和。
|
||
|
||
下图展示了一个例子,给定网格的最小路径和为 $13$ 。
|
||
|
||
![最小路径和示例数据](dp_solution_pipeline.assets/min_path_sum_example.png)
|
||
|
||
**第一步:思考每轮的决策,定义状态,从而得到 $dp$ 表**
|
||
|
||
本题的每一轮的决策就是从当前格子向下或向右走一步。设当前格子的行列索引为 $[i, j]$ ,则向下或向右走一步后,索引变为 $[i+1, j]$ 或 $[i, j+1]$ 。因此,状态应包含行索引和列索引两个变量,记为 $[i, j]$ 。
|
||
|
||
状态 $[i, j]$ 对应的子问题为:从起始点 $[0, 0]$ 走到 $[i, j]$ 的最小路径和,解记为 $dp[i, j]$ 。
|
||
|
||
至此,我们就得到了下图所示的二维 $dp$ 矩阵,其尺寸与输入网格 $grid$ 相同。
|
||
|
||
![状态定义与 dp 表](dp_solution_pipeline.assets/min_path_sum_solution_state_definition.png)
|
||
|
||
!!! note
|
||
|
||
动态规划和回溯过程可以描述为一个决策序列,而状态由所有决策变量构成。它应当包含描述解题进度的所有变量,其包含了足够的信息,能够用来推导出下一个状态。
|
||
|
||
每个状态都对应一个子问题,我们会定义一个 $dp$ 表来存储所有子问题的解,状态的每个独立变量都是 $dp$ 表的一个维度。从本质上看,$dp$ 表是状态和子问题的解之间的映射。
|
||
|
||
**第二步:找出最优子结构,进而推导出状态转移方程**
|
||
|
||
对于状态 $[i, j]$ ,它只能从上边格子 $[i-1, j]$ 和左边格子 $[i, j-1]$ 转移而来。因此最优子结构为:到达 $[i, j]$ 的最小路径和由 $[i, j-1]$ 的最小路径和与 $[i-1, j]$ 的最小路径和中较小的那一个决定。
|
||
|
||
根据以上分析,可推出下图所示的状态转移方程:
|
||
|
||
$$
|
||
dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
|
||
$$
|
||
|
||
![最优子结构与状态转移方程](dp_solution_pipeline.assets/min_path_sum_solution_state_transition.png)
|
||
|
||
!!! note
|
||
|
||
根据定义好的 $dp$ 表,思考原问题和子问题的关系,找出通过子问题的最优解来构造原问题的最优解的方法,即最优子结构。
|
||
|
||
一旦我们找到了最优子结构,就可以使用它来构建出状态转移方程。
|
||
|
||
**第三步:确定边界条件和状态转移顺序**
|
||
|
||
在本题中,处在首行的状态只能从其左边的状态得来,处在首列的状态只能从其上边的状态得来,因此首行 $i = 0$ 和首列 $j = 0$ 是边界条件。
|
||
|
||
如下图所示,由于每个格子是由其左方格子和上方格子转移而来,因此我们使用循环来遍历矩阵,外循环遍历各行,内循环遍历各列。
|
||
|
||
![边界条件与状态转移顺序](dp_solution_pipeline.assets/min_path_sum_solution_initial_state.png)
|
||
|
||
!!! note
|
||
|
||
边界条件在动态规划中用于初始化 $dp$ 表,在搜索中用于剪枝。
|
||
|
||
状态转移顺序的核心是要保证在计算当前问题的解时,所有它依赖的更小子问题的解都已经被正确地计算出来。
|
||
|
||
根据以上分析,我们已经可以直接写出动态规划代码。然而子问题分解是一种从顶至底的思想,因此按照“暴力搜索 $\rightarrow$ 记忆化搜索 $\rightarrow$ 动态规划”的顺序实现更加符合思维习惯。
|
||
|
||
### 方法一:暴力搜索
|
||
|
||
从状态 $[i, j]$ 开始搜索,不断分解为更小的状态 $[i-1, j]$ 和 $[i, j-1]$ ,递归函数包括以下要素。
|
||
|
||
- **递归参数**:状态 $[i, j]$ 。
|
||
- **返回值**:从 $[0, 0]$ 到 $[i, j]$ 的最小路径和 $dp[i, j]$ 。
|
||
- **终止条件**:当 $i = 0$ 且 $j = 0$ 时,返回代价 $grid[0, 0]$ 。
|
||
- **剪枝**:当 $i < 0$ 时或 $j < 0$ 时索引越界,此时返回代价 $+\infty$ ,代表不可行。
|
||
|
||
实现代码如下:
|
||
|
||
```src
|
||
[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dfs}
|
||
```
|
||
|
||
下图给出了以 $dp[2, 1]$ 为根节点的递归树,其中包含一些重叠子问题,其数量会随着网格 `grid` 的尺寸变大而急剧增多。
|
||
|
||
从本质上看,造成重叠子问题的原因为:**存在多条路径可以从左上角到达某一单元格**。
|
||
|
||
![暴力搜索递归树](dp_solution_pipeline.assets/min_path_sum_dfs.png)
|
||
|
||
每个状态都有向下和向右两种选择,从左上角走到右下角总共需要 $m + n - 2$ 步,所以最差时间复杂度为 $O(2^{m + n})$ 。请注意,这种计算方式未考虑临近网格边界的情况,当到达网络边界时只剩下一种选择,因此实际的路径数量会少一些。
|
||
|
||
### 方法二:记忆化搜索
|
||
|
||
我们引入一个和网格 `grid` 相同尺寸的记忆列表 `mem` ,用于记录各个子问题的解,并将重叠子问题进行剪枝:
|
||
|
||
```src
|
||
[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dfs_mem}
|
||
```
|
||
|
||
如下图所示,在引入记忆化后,所有子问题的解只需计算一次,因此时间复杂度取决于状态总数,即网格尺寸 $O(nm)$ 。
|
||
|
||
![记忆化搜索递归树](dp_solution_pipeline.assets/min_path_sum_dfs_mem.png)
|
||
|
||
### 方法三:动态规划
|
||
|
||
基于迭代实现动态规划解法,代码如下所示:
|
||
|
||
```src
|
||
[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dp}
|
||
```
|
||
|
||
下图展示了最小路径和的状态转移过程,其遍历了整个网格,**因此时间复杂度为 $O(nm)$** 。
|
||
|
||
数组 `dp` 大小为 $n \times m$ ,**因此空间复杂度为 $O(nm)$** 。
|
||
|
||
=== "<1>"
|
||
![最小路径和的动态规划过程](dp_solution_pipeline.assets/min_path_sum_dp_step1.png)
|
||
|
||
=== "<2>"
|
||
![min_path_sum_dp_step2](dp_solution_pipeline.assets/min_path_sum_dp_step2.png)
|
||
|
||
=== "<3>"
|
||
![min_path_sum_dp_step3](dp_solution_pipeline.assets/min_path_sum_dp_step3.png)
|
||
|
||
=== "<4>"
|
||
![min_path_sum_dp_step4](dp_solution_pipeline.assets/min_path_sum_dp_step4.png)
|
||
|
||
=== "<5>"
|
||
![min_path_sum_dp_step5](dp_solution_pipeline.assets/min_path_sum_dp_step5.png)
|
||
|
||
=== "<6>"
|
||
![min_path_sum_dp_step6](dp_solution_pipeline.assets/min_path_sum_dp_step6.png)
|
||
|
||
=== "<7>"
|
||
![min_path_sum_dp_step7](dp_solution_pipeline.assets/min_path_sum_dp_step7.png)
|
||
|
||
=== "<8>"
|
||
![min_path_sum_dp_step8](dp_solution_pipeline.assets/min_path_sum_dp_step8.png)
|
||
|
||
=== "<9>"
|
||
![min_path_sum_dp_step9](dp_solution_pipeline.assets/min_path_sum_dp_step9.png)
|
||
|
||
=== "<10>"
|
||
![min_path_sum_dp_step10](dp_solution_pipeline.assets/min_path_sum_dp_step10.png)
|
||
|
||
=== "<11>"
|
||
![min_path_sum_dp_step11](dp_solution_pipeline.assets/min_path_sum_dp_step11.png)
|
||
|
||
=== "<12>"
|
||
![min_path_sum_dp_step12](dp_solution_pipeline.assets/min_path_sum_dp_step12.png)
|
||
|
||
### 空间优化
|
||
|
||
由于每个格子只与其左边和上边的格子有关,因此我们可以只用一个单行数组来实现 $dp$ 表。
|
||
|
||
请注意,因为数组 `dp` 只能表示一行的状态,所以我们无法提前初始化首列状态,而是在遍历每行时更新它:
|
||
|
||
```src
|
||
[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dp_comp}
|
||
```
|