mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 15:06:29 +08:00
ec25970e8e
Add build script for Zig.
450 lines
12 KiB
Markdown
Executable file
450 lines
12 KiB
Markdown
Executable file
---
|
||
comments: true
|
||
---
|
||
|
||
# 5.1. 栈
|
||
|
||
「栈 Stack」是一种遵循「先入后出 first in, last out」数据操作规则的线性数据结构。我们可以将栈类比为放在桌面上的一摞盘子,如果需要拿出底部的盘子,则需要先将上面的盘子依次取出。
|
||
|
||
“盘子”是一种形象比喻,我们将盘子替换为任意一种元素(例如整数、字符、对象等),就得到了栈数据结构。
|
||
|
||
我们将这一摞元素的顶部称为「栈顶」,将底部称为「栈底」,将把元素添加到栈顶的操作称为「入栈」,将删除栈顶元素的操作称为「出栈」。
|
||
|
||
![stack_operations](stack.assets/stack_operations.png)
|
||
|
||
<p align="center"> Fig. 栈的先入后出特性 </p>
|
||
|
||
## 5.1.1. 栈常用操作
|
||
|
||
栈的常用操作见下表(方法命名以 Java 为例)。
|
||
|
||
<p align="center"> Table. 栈的常用操作 </p>
|
||
|
||
<div class="center-table" markdown>
|
||
|
||
| 方法 | 描述 | 时间复杂度 |
|
||
| --------- | ---------------------- | ---------- |
|
||
| push() | 元素入栈(添加至栈顶) | $O(1)$ |
|
||
| pop() | 栈顶元素出栈 | $O(1)$ |
|
||
| peek() | 访问栈顶元素 | $O(1)$ |
|
||
| size() | 获取栈的长度 | $O(1)$ |
|
||
| isEmpty() | 判断栈是否为空 | $O(1)$ |
|
||
|
||
</div>
|
||
|
||
我们可以直接使用编程语言实现好的栈类。 某些语言并未专门提供栈类,但我们可以直接把该语言的「数组」或「链表」看作栈来使用,并通过“脑补”来屏蔽无关操作。
|
||
|
||
=== "Java"
|
||
|
||
```java title="stack.java"
|
||
/* 初始化栈 */
|
||
// 在 Java 中,推荐将 ArrayList 当作栈来使用
|
||
List<Integer> stack = new ArrayList<>();
|
||
|
||
/* 元素入栈 */
|
||
stack.add(1);
|
||
stack.add(3);
|
||
stack.add(2);
|
||
stack.add(5);
|
||
stack.add(4);
|
||
|
||
/* 访问栈顶元素 */
|
||
int peek = stack.get(stack.size() - 1);
|
||
|
||
/* 元素出栈 */
|
||
int pop = stack.remove(stack.size() - 1);
|
||
|
||
/* 获取栈的长度 */
|
||
int size = stack.size();
|
||
|
||
/* 判断是否为空 */
|
||
boolean isEmpty = stack.isEmpty();
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="stack.cpp"
|
||
/* 初始化栈 */
|
||
stack<int> stack;
|
||
|
||
/* 元素入栈 */
|
||
stack.push(1);
|
||
stack.push(3);
|
||
stack.push(2);
|
||
stack.push(5);
|
||
stack.push(4);
|
||
|
||
/* 访问栈顶元素 */
|
||
int top = stack.top();
|
||
|
||
/* 元素出栈 */
|
||
stack.pop();
|
||
|
||
/* 获取栈的长度 */
|
||
int size = stack.size();
|
||
|
||
/* 判断是否为空 */
|
||
bool empty = stack.empty();
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="stack.py"
|
||
""" 初始化栈 """
|
||
# Python 没有内置的栈类,可以把 List 当作栈来使用
|
||
stack = []
|
||
|
||
""" 元素入栈 """
|
||
stack.append(1)
|
||
stack.append(3)
|
||
stack.append(2)
|
||
stack.append(5)
|
||
stack.append(4)
|
||
|
||
""" 访问栈顶元素 """
|
||
peek = stack[-1]
|
||
|
||
""" 元素出栈 """
|
||
pop = stack.pop()
|
||
|
||
""" 获取栈的长度 """
|
||
size = len(stack)
|
||
|
||
""" 判断是否为空 """
|
||
is_empty = len(stack) == 0
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="stack_test.go"
|
||
/* 初始化栈 */
|
||
// 在 Go 中,推荐将 Slice 当作栈来使用
|
||
var stack []int
|
||
|
||
/* 元素入栈 */
|
||
stack = append(stack, 1)
|
||
stack = append(stack, 3)
|
||
stack = append(stack, 2)
|
||
stack = append(stack, 5)
|
||
stack = append(stack, 4)
|
||
|
||
/* 访问栈顶元素 */
|
||
peek := stack[len(stack)-1]
|
||
|
||
/* 元素出栈 */
|
||
pop := stack[len(stack)-1]
|
||
stack = stack[:len(stack)-1]
|
||
|
||
/* 获取栈的长度 */
|
||
size := len(stack)
|
||
|
||
/* 判断是否为空 */
|
||
isEmpty := len(stack) == 0
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="stack.js"
|
||
/* 初始化栈 */
|
||
// Javascript 没有内置的栈类,可以把 Array 当作栈来使用
|
||
const stack = [];
|
||
|
||
/* 元素入栈 */
|
||
stack.push(1);
|
||
stack.push(3);
|
||
stack.push(2);
|
||
stack.push(5);
|
||
stack.push(4);
|
||
|
||
/* 访问栈顶元素 */
|
||
const peek = stack[stack.length-1];
|
||
|
||
/* 元素出栈 */
|
||
const pop = stack.pop();
|
||
|
||
/* 获取栈的长度 */
|
||
const size = stack.length;
|
||
|
||
/* 判断是否为空 */
|
||
const is_empty = stack.length === 0;
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="stack.ts"
|
||
/* 初始化栈 */
|
||
// Typescript 没有内置的栈类,可以把 Array 当作栈来使用
|
||
const stack: number[] = [];
|
||
|
||
/* 元素入栈 */
|
||
stack.push(1);
|
||
stack.push(3);
|
||
stack.push(2);
|
||
stack.push(5);
|
||
stack.push(4);
|
||
|
||
/* 访问栈顶元素 */
|
||
const peek = stack[stack.length - 1];
|
||
|
||
/* 元素出栈 */
|
||
const pop = stack.pop();
|
||
|
||
/* 获取栈的长度 */
|
||
const size = stack.length;
|
||
|
||
/* 判断是否为空 */
|
||
const is_empty = stack.length === 0;
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="stack.c"
|
||
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="stack.cs"
|
||
/* 初始化栈 */
|
||
Stack<int> stack = new ();
|
||
|
||
/* 元素入栈 */
|
||
stack.Push(1);
|
||
stack.Push(3);
|
||
stack.Push(2);
|
||
stack.Push(5);
|
||
stack.Push(4);
|
||
|
||
/* 访问栈顶元素 */
|
||
int peek = stack.Peek();
|
||
|
||
/* 元素出栈 */
|
||
int pop = stack.Pop();
|
||
|
||
/* 获取栈的长度 */
|
||
int size = stack.Count();
|
||
|
||
/* 判断是否为空 */
|
||
bool isEmpty = stack.Count()==0;
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="stack.swift"
|
||
/* 初始化栈 */
|
||
// Swift 没有内置的栈类,可以把 Array 当作栈来使用
|
||
var stack: [Int] = []
|
||
|
||
/* 元素入栈 */
|
||
stack.append(1)
|
||
stack.append(3)
|
||
stack.append(2)
|
||
stack.append(5)
|
||
stack.append(4)
|
||
|
||
/* 访问栈顶元素 */
|
||
let peek = stack.last!
|
||
|
||
/* 元素出栈 */
|
||
let pop = stack.removeLast()
|
||
|
||
/* 获取栈的长度 */
|
||
let size = stack.count
|
||
|
||
/* 判断是否为空 */
|
||
let isEmpty = stack.isEmpty
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="stack.zig"
|
||
|
||
```
|
||
|
||
## 5.1.2. 栈的实现
|
||
|
||
为了更加清晰地了解栈的运行机制,接下来我们来自己动手实现一个栈类。
|
||
|
||
栈规定元素是先入后出的,因此我们只能在栈顶添加或删除元素。然而,数组或链表都可以在任意位置添加删除元素,因此 **栈可被看作是一种受约束的数组或链表**。换言之,我们可以“屏蔽”数组或链表的部分无关操作,使之对外的表现逻辑符合栈的规定即可。
|
||
|
||
### 基于链表的实现
|
||
|
||
使用「链表」实现栈时,将链表的头结点看作栈顶,将尾结点看作栈底。
|
||
|
||
对于入栈操作,将元素插入到链表头部即可,这种结点添加方式被称为“头插法”。而对于出栈操作,则将头结点从链表中删除即可。
|
||
|
||
=== "LinkedListStack"
|
||
![linkedlist_stack](stack.assets/linkedlist_stack.png)
|
||
|
||
=== "push()"
|
||
![linkedlist_stack_push](stack.assets/linkedlist_stack_push.png)
|
||
|
||
=== "pop()"
|
||
![linkedlist_stack_pop](stack.assets/linkedlist_stack_pop.png)
|
||
|
||
以下是基于链表实现栈的示例代码。
|
||
|
||
=== "Java"
|
||
|
||
```java title="linkedlist_stack.java"
|
||
[class]{LinkedListStack}-[func]{}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="linkedlist_stack.cpp"
|
||
[class]{LinkedListStack}-[func]{}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="linkedlist_stack.py"
|
||
[class]{LinkedListStack}-[func]{}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="linkedlist_stack.go"
|
||
[class]{linkedListStack}-[func]{}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="linkedlist_stack.js"
|
||
[class]{LinkedListStack}-[func]{}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="linkedlist_stack.ts"
|
||
[class]{LinkedListStack}-[func]{}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="linkedlist_stack.c"
|
||
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="linkedlist_stack.cs"
|
||
[class]{LinkedListStack}-[func]{}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="linkedlist_stack.swift"
|
||
[class]{LinkedListStack}-[func]{}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="linkedlist_stack.zig"
|
||
[class]{LinkedListStack}-[func]{}
|
||
```
|
||
|
||
### 基于数组的实现
|
||
|
||
使用「数组」实现栈时,考虑将数组的尾部当作栈顶。这样设计下,「入栈」与「出栈」操作就对应在数组尾部「添加元素」与「删除元素」,时间复杂度都为 $O(1)$ 。
|
||
|
||
=== "ArrayStack"
|
||
![array_stack](stack.assets/array_stack.png)
|
||
|
||
=== "push()"
|
||
![array_stack_push](stack.assets/array_stack_push.png)
|
||
|
||
=== "pop()"
|
||
![array_stack_pop](stack.assets/array_stack_pop.png)
|
||
|
||
由于入栈的元素可能是源源不断的,因此可以使用支持动态扩容的「列表」,这样就无需自行实现数组扩容了。以下是示例代码。
|
||
|
||
=== "Java"
|
||
|
||
```java title="array_stack.java"
|
||
[class]{ArrayStack}-[func]{}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="array_stack.cpp"
|
||
[class]{ArrayStack}-[func]{}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="array_stack.py"
|
||
[class]{ArrayStack}-[func]{}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="array_stack.go"
|
||
[class]{arrayStack}-[func]{}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="array_stack.js"
|
||
[class]{ArrayStack}-[func]{}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="array_stack.ts"
|
||
[class]{ArrayStack}-[func]{}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="array_stack.c"
|
||
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="array_stack.cs"
|
||
[class]{ArrayStack}-[func]{}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="array_stack.swift"
|
||
[class]{ArrayStack}-[func]{}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="array_stack.zig"
|
||
[class]{ArrayStack}-[func]{}
|
||
```
|
||
|
||
## 5.1.3. 两种实现对比
|
||
|
||
### 支持操作
|
||
|
||
两种实现都支持栈定义中的各项操作,数组实现额外支持随机访问,但这已经超出栈的定义范畴,一般不会用到。
|
||
|
||
### 时间效率
|
||
|
||
在数组(列表)实现中,入栈与出栈操作都是在预先分配好的连续内存中操作,具有很好的缓存本地性,效率很好。然而,如果入栈时超出数组容量,则会触发扩容机制,那么该次入栈操作的时间复杂度为 $O(n)$ 。
|
||
|
||
在链表实现中,链表的扩容非常灵活,不存在上述数组扩容时变慢的问题。然而,入栈操作需要初始化结点对象并修改指针,因而效率不如数组。进一步地思考,如果入栈元素不是 `int` 而是结点对象,那么就可以省去初始化步骤,从而提升效率。
|
||
|
||
综上所述,当入栈与出栈操作的元素是基本数据类型(例如 `int` , `double` )时,则结论如下:
|
||
|
||
- 数组实现的栈在触发扩容时会变慢,但由于扩容是低频操作,因此 **总体效率更高**;
|
||
- 链表实现的栈可以提供 **更加稳定的效率表现**;
|
||
|
||
### 空间效率
|
||
|
||
在初始化列表时,系统会给列表分配“初始容量”,该容量可能超过我们的需求。并且扩容机制一般是按照特定倍率(比如 2 倍)进行扩容,扩容后的容量也可能超出我们的需求。因此,**数组实现栈会造成一定的空间浪费**。
|
||
|
||
当然,由于结点需要额外存储指针,因此 **链表结点比数组元素占用更大**。
|
||
|
||
综上,我们不能简单地确定哪种实现更加省内存,需要 case-by-case 地分析。
|
||
|
||
## 5.1.4. 栈典型应用
|
||
|
||
- **浏览器中的后退与前进、软件中的撤销与反撤销**。每当我们打开新的网页,浏览器就将上一个网页执行入栈,这样我们就可以通过「后退」操作来回到上一页面,后退操作实际上是在执行出栈。如果要同时支持后退和前进,那么则需要两个栈来配合实现。
|
||
- **程序内存管理**。每当调用函数时,系统就会在栈顶添加一个栈帧,用来记录函数的上下文信息。在递归函数中,向下递推会不断执行入栈,向上回溯阶段时出栈。
|