mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-28 06:16:29 +08:00
795 lines
30 KiB
Markdown
795 lines
30 KiB
Markdown
---
|
||
comments: true
|
||
---
|
||
|
||
# 12.3. 子集和问题
|
||
|
||
!!! question
|
||
|
||
给定一个正整数数组 `nums` 和一个目标正整数 `target` ,请找出所有可能的组合,使得组合中的元素和等于 `target` 。给定数组无重复元素,每个元素可以被选取多次。请以列表形式返回这些组合,列表中不应包含重复组合。
|
||
|
||
例如,输入集合 $\{3, 4, 5\}$ 和目标整数 $9$ ,由于集合中的数字可以被重复选取,因此解为 $\{3, 3, 3\}, \{4, 5\}$ 。请注意,子集是不区分元素顺序的,例如 $\{4, 5\}$ 和 $\{5, 4\}$ 是同一个子集。
|
||
|
||
## 12.3.1. 从全排列引出解法
|
||
|
||
类似于上节全排列问题的解法,我们可以把子集的生成过程想象成一系列选择的结果,并在选择过程中实时更新“元素和”,当元素和等于 `target` 时,就将子集记录至结果列表。
|
||
|
||
而与全排列问题不同的是,本题允许重复选取同一元素,因此无需借助 `selected` 布尔列表来记录元素是否已被选择。我们可以对全排列代码进行小幅修改,初步得到解题代码。
|
||
|
||
=== "Java"
|
||
|
||
```java title="subset_sum_i_naive.java"
|
||
/* 回溯算法:子集和 I */
|
||
void backtrack(List<Integer> state, int target, int total, int[] choices, List<List<Integer>> res) {
|
||
// 子集和等于 target 时,记录解
|
||
if (total == target) {
|
||
res.add(new ArrayList<>(state));
|
||
return;
|
||
}
|
||
// 遍历所有选择
|
||
for (int i = 0; i < choices.length; i++) {
|
||
// 剪枝:若子集和超过 target ,则跳过该选择
|
||
if (total + choices[i] > target) {
|
||
continue;
|
||
}
|
||
// 尝试:做出选择,更新元素和 total
|
||
state.add(choices[i]);
|
||
// 进行下一轮选择
|
||
backtrack(state, target, total + choices[i], choices, res);
|
||
// 回退:撤销选择,恢复到之前的状态
|
||
state.remove(state.size() - 1);
|
||
}
|
||
}
|
||
|
||
/* 求解子集和 I(包含重复子集) */
|
||
List<List<Integer>> subsetSumINaive(int[] nums, int target) {
|
||
List<Integer> state = new ArrayList<>(); // 状态(子集)
|
||
int total = 0; // 子集和
|
||
List<List<Integer>> res = new ArrayList<>(); // 结果列表(子集列表)
|
||
backtrack(state, target, total, nums, res);
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="subset_sum_i_naive.cpp"
|
||
/* 回溯算法:子集和 I */
|
||
void backtrack(vector<int> &state, int target, int total, vector<int> &choices, vector<vector<int>> &res) {
|
||
// 子集和等于 target 时,记录解
|
||
if (total == target) {
|
||
res.push_back(state);
|
||
return;
|
||
}
|
||
// 遍历所有选择
|
||
for (size_t i = 0; i < choices.size(); i++) {
|
||
// 剪枝:若子集和超过 target ,则跳过该选择
|
||
if (total + choices[i] > target) {
|
||
continue;
|
||
}
|
||
// 尝试:做出选择,更新元素和 total
|
||
state.push_back(choices[i]);
|
||
// 进行下一轮选择
|
||
backtrack(state, target, total + choices[i], choices, res);
|
||
// 回退:撤销选择,恢复到之前的状态
|
||
state.pop_back();
|
||
}
|
||
}
|
||
|
||
/* 求解子集和 I(包含重复子集) */
|
||
vector<vector<int>> subsetSumINaive(vector<int> &nums, int target) {
|
||
vector<int> state; // 状态(子集)
|
||
int total = 0; // 子集和
|
||
vector<vector<int>> res; // 结果列表(子集列表)
|
||
backtrack(state, target, total, nums, res);
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="subset_sum_i_naive.py"
|
||
def backtrack(
|
||
state: list[int],
|
||
target: int,
|
||
total: int,
|
||
choices: list[int],
|
||
res: list[list[int]],
|
||
):
|
||
"""回溯算法:子集和 I"""
|
||
# 子集和等于 target 时,记录解
|
||
if total == target:
|
||
res.append(list(state))
|
||
return
|
||
# 遍历所有选择
|
||
for i in range(len(choices)):
|
||
# 剪枝:若子集和超过 target ,则跳过该选择
|
||
if total + choices[i] > target:
|
||
continue
|
||
# 尝试:做出选择,更新元素和 total
|
||
state.append(choices[i])
|
||
# 进行下一轮选择
|
||
backtrack(state, target, total + choices[i], choices, res)
|
||
# 回退:撤销选择,恢复到之前的状态
|
||
state.pop()
|
||
|
||
def subset_sum_i_naive(nums: list[int], target: int) -> list[list[int]]:
|
||
"""求解子集和 I(包含重复子集)"""
|
||
state = [] # 状态(子集)
|
||
total = 0 # 子集和
|
||
res = [] # 结果列表(子集列表)
|
||
backtrack(state, target, total, nums, res)
|
||
return res
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="subset_sum_i_naive.go"
|
||
/* 回溯算法:子集和 I */
|
||
func backtrackSubsetSumINaive(total, target int, state, choices *[]int, res *[][]int) {
|
||
// 子集和等于 target 时,记录解
|
||
if target == total {
|
||
newState := append([]int{}, *state...)
|
||
*res = append(*res, newState)
|
||
return
|
||
}
|
||
// 遍历所有选择
|
||
for i := 0; i < len(*choices); i++ {
|
||
// 剪枝:若子集和超过 target ,则跳过该选择
|
||
if total+(*choices)[i] > target {
|
||
continue
|
||
}
|
||
// 尝试:做出选择,更新元素和 total
|
||
*state = append(*state, (*choices)[i])
|
||
// 进行下一轮选择
|
||
backtrackSubsetSumINaive(total+(*choices)[i], target, state, choices, res)
|
||
// 回退:撤销选择,恢复到之前的状态
|
||
*state = (*state)[:len(*state)-1]
|
||
}
|
||
}
|
||
|
||
/* 求解子集和 I(包含重复子集) */
|
||
func subsetSumINaive(nums []int, target int) [][]int {
|
||
state := make([]int, 0) // 状态(子集)
|
||
total := 0 // 子集和
|
||
res := make([][]int, 0) // 结果列表(子集列表)
|
||
backtrackSubsetSumINaive(total, target, &state, &nums, &res)
|
||
return res
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="subset_sum_i_naive.js"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumINaive}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="subset_sum_i_naive.ts"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumINaive}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="subset_sum_i_naive.c"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumINaive}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="subset_sum_i_naive.cs"
|
||
/* 回溯算法:子集和 I */
|
||
void backtrack(List<int> state, int target, int total, int[] choices, List<List<int>> res) {
|
||
// 子集和等于 target 时,记录解
|
||
if (total == target) {
|
||
res.Add(new List<int>(state));
|
||
return;
|
||
}
|
||
// 遍历所有选择
|
||
for (int i = 0; i < choices.Length; i++) {
|
||
// 剪枝:若子集和超过 target ,则跳过该选择
|
||
if (total + choices[i] > target) {
|
||
continue;
|
||
}
|
||
// 尝试:做出选择,更新元素和 total
|
||
state.Add(choices[i]);
|
||
// 进行下一轮选择
|
||
backtrack(state, target, total + choices[i], choices, res);
|
||
// 回退:撤销选择,恢复到之前的状态
|
||
state.RemoveAt(state.Count - 1);
|
||
}
|
||
}
|
||
|
||
/* 求解子集和 I(包含重复子集) */
|
||
List<List<int>> subsetSumINaive(int[] nums, int target) {
|
||
List<int> state = new List<int>(); // 状态(子集)
|
||
int total = 0; // 子集和
|
||
List<List<int>> res = new List<List<int>>(); // 结果列表(子集列表)
|
||
backtrack(state, target, total, nums, res);
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="subset_sum_i_naive.swift"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumINaive}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="subset_sum_i_naive.zig"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumINaive}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="subset_sum_i_naive.dart"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumINaive}
|
||
```
|
||
|
||
向以上代码输入数组 $[3, 4, 5]$ 和目标元素 $9$ ,输出结果为 $[3, 3, 3], [4, 5], [5, 4]$ 。**虽然成功找出了所有和为 $9$ 的子集,但其中存在重复的子集 $[4, 5]$ 和 $[5, 4]$** 。这是因为搜索过程是区分选择顺序的,如下图所示,先选 $4$ 后选 $5$ 与先选 $5$ 后选 $4$ 是两种不同的情况。
|
||
|
||
![子集搜索与越界剪枝](subset_sum_problem.assets/subset_sum_i_naive.png)
|
||
|
||
<p align="center"> Fig. 子集搜索与越界剪枝 </p>
|
||
|
||
## 12.3.2. 重复子集剪枝
|
||
|
||
为了去除重复子集,**一种直接的思路是对结果列表进行去重**。但这个方法效率很低,因为:
|
||
|
||
- 当数组元素较多,尤其是当 `target` 较大时,搜索过程会产生大量的重复子集。
|
||
- 比较子集(数组)的异同是很耗时的,需要先排序数组,再比较数组中每个元素的异同。
|
||
|
||
为了达到最佳效率,**我们希望在搜索过程中通过剪枝进行去重**。观察下图,重复子集是在以不同顺序选择数组元素时产生的,具体来看:
|
||
|
||
1. 第一轮和第二轮分别选择 $3$ , $4$ ,会生成包含这两个元素的所有子集,记为 $[3, 4, \cdots]$ 。
|
||
2. 若第一轮选择 $4$ ,**则第二轮应该跳过 $3$** ,因为该选择产生的子集 $[4, 3, \cdots]$ 和 `1.` 中提到的子集完全重复。
|
||
3. 同理,若第一轮选择 $5$ ,**则第二轮应该跳过 $3$ 和 $4$** ,因为子集 $[5, 3, \cdots]$ 和子集 $[5, 4, \cdots]$ 和之前的子集重复。
|
||
|
||
![不同选择顺序导致的重复子集](subset_sum_problem.assets/subset_sum_i_pruning.png)
|
||
|
||
<p align="center"> Fig. 不同选择顺序导致的重复子集 </p>
|
||
|
||
总结来看,给定输入数组 $[x_1, x_2, \cdots, x_n]$ ,设搜索过程中的选择序列为 $[x_{i_1}, x_{i_2}, \cdots , x_{i_m}]$ ,则该选择序列需要满足 $i_1 \leq i_2 \leq \cdots \leq i_m$ 。**不满足该条件的选择序列都是重复子集**。
|
||
|
||
为实现该剪枝,我们初始化变量 `start` ,用于指示遍历起点。**当做出选择 $x_{i}$ 后,设定下一轮从索引 $i$ 开始遍历**,从而完成子集去重。
|
||
|
||
除此之外,我们还对代码进行了两项优化。首先,我们在开启搜索前将数组 `nums` 排序,在搜索过程中,**当子集和超过 `target` 时直接结束循环**,因为后边的元素更大,其子集和都一定会超过 `target` 。其次,**我们通过在 `target` 上执行减法来统计元素和**,当 `target` 等于 $0$ 时记录解,省去了元素和变量 `total` 。
|
||
|
||
=== "Java"
|
||
|
||
```java title="subset_sum_i.java"
|
||
/* 回溯算法:子集和 I */
|
||
void backtrack(List<Integer> state, int target, int[] choices, int start, List<List<Integer>> res) {
|
||
// 子集和等于 target 时,记录解
|
||
if (target == 0) {
|
||
res.add(new ArrayList<>(state));
|
||
return;
|
||
}
|
||
// 遍历所有选择
|
||
// 剪枝二:从 start 开始遍历,避免生成重复子集
|
||
for (int i = start; i < choices.length; i++) {
|
||
// 剪枝一:若子集和超过 target ,则直接结束循环
|
||
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
|
||
if (target - choices[i] < 0) {
|
||
break;
|
||
}
|
||
// 尝试:做出选择,更新 target, start
|
||
state.add(choices[i]);
|
||
// 进行下一轮选择
|
||
backtrack(state, target - choices[i], choices, i, res);
|
||
// 回退:撤销选择,恢复到之前的状态
|
||
state.remove(state.size() - 1);
|
||
}
|
||
}
|
||
|
||
/* 求解子集和 I */
|
||
List<List<Integer>> subsetSumI(int[] nums, int target) {
|
||
List<Integer> state = new ArrayList<>(); // 状态(子集)
|
||
Arrays.sort(nums); // 对 nums 进行排序
|
||
int start = 0; // 遍历起始点
|
||
List<List<Integer>> res = new ArrayList<>(); // 结果列表(子集列表)
|
||
backtrack(state, target, nums, start, res);
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="subset_sum_i.cpp"
|
||
/* 回溯算法:子集和 I */
|
||
void backtrack(vector<int> &state, int target, vector<int> &choices, int start, vector<vector<int>> &res) {
|
||
// 子集和等于 target 时,记录解
|
||
if (target == 0) {
|
||
res.push_back(state);
|
||
return;
|
||
}
|
||
// 遍历所有选择
|
||
// 剪枝二:从 start 开始遍历,避免生成重复子集
|
||
for (int i = start; i < choices.size(); i++) {
|
||
// 剪枝一:若子集和超过 target ,则直接结束循环
|
||
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
|
||
if (target - choices[i] < 0) {
|
||
break;
|
||
}
|
||
// 尝试:做出选择,更新 target, start
|
||
state.push_back(choices[i]);
|
||
// 进行下一轮选择
|
||
backtrack(state, target - choices[i], choices, i, res);
|
||
// 回退:撤销选择,恢复到之前的状态
|
||
state.pop_back();
|
||
}
|
||
}
|
||
|
||
/* 求解子集和 I */
|
||
vector<vector<int>> subsetSumI(vector<int> &nums, int target) {
|
||
vector<int> state; // 状态(子集)
|
||
sort(nums.begin(), nums.end()); // 对 nums 进行排序
|
||
int start = 0; // 遍历起始点
|
||
vector<vector<int>> res; // 结果列表(子集列表)
|
||
backtrack(state, target, nums, start, res);
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="subset_sum_i.py"
|
||
def backtrack(
|
||
state: list[int], target: int, choices: list[int], start: int, res: list[list[int]]
|
||
):
|
||
"""回溯算法:子集和 I"""
|
||
# 子集和等于 target 时,记录解
|
||
if target == 0:
|
||
res.append(list(state))
|
||
return
|
||
# 遍历所有选择
|
||
# 剪枝二:从 start 开始遍历,避免生成重复子集
|
||
for i in range(start, len(choices)):
|
||
# 剪枝一:若子集和超过 target ,则直接结束循环
|
||
# 这是因为数组已排序,后边元素更大,子集和一定超过 target
|
||
if target - choices[i] < 0:
|
||
break
|
||
# 尝试:做出选择,更新 target, start
|
||
state.append(choices[i])
|
||
# 进行下一轮选择
|
||
backtrack(state, target - choices[i], choices, i, res)
|
||
# 回退:撤销选择,恢复到之前的状态
|
||
state.pop()
|
||
|
||
def subset_sum_i(nums: list[int], target: int) -> list[list[int]]:
|
||
"""求解子集和 I"""
|
||
state = [] # 状态(子集)
|
||
nums.sort() # 对 nums 进行排序
|
||
start = 0 # 遍历起始点
|
||
res = [] # 结果列表(子集列表)
|
||
backtrack(state, target, nums, start, res)
|
||
return res
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="subset_sum_i.go"
|
||
/* 回溯算法:子集和 I */
|
||
func backtrackSubsetSumI(start, target int, state, choices *[]int, res *[][]int) {
|
||
// 子集和等于 target 时,记录解
|
||
if target == 0 {
|
||
newState := append([]int{}, *state...)
|
||
*res = append(*res, newState)
|
||
return
|
||
}
|
||
// 遍历所有选择
|
||
// 剪枝二:从 start 开始遍历,避免生成重复子集
|
||
for i := start; i < len(*choices); i++ {
|
||
// 剪枝一:若子集和超过 target ,则直接结束循环
|
||
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
|
||
if target-(*choices)[i] < 0 {
|
||
break
|
||
}
|
||
// 尝试:做出选择,更新 target, start
|
||
*state = append(*state, (*choices)[i])
|
||
// 进行下一轮选择
|
||
backtrackSubsetSumI(i, target-(*choices)[i], state, choices, res)
|
||
// 回退:撤销选择,恢复到之前的状态
|
||
*state = (*state)[:len(*state)-1]
|
||
}
|
||
}
|
||
|
||
/* 求解子集和 I */
|
||
func subsetSumI(nums []int, target int) [][]int {
|
||
state := make([]int, 0) // 状态(子集)
|
||
sort.Ints(nums) // 对 nums 进行排序
|
||
start := 0 // 遍历起始点
|
||
res := make([][]int, 0) // 结果列表(子集列表)
|
||
backtrackSubsetSumI(start, target, &state, &nums, &res)
|
||
return res
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="subset_sum_i.js"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumI}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="subset_sum_i.ts"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumI}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="subset_sum_i.c"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumI}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="subset_sum_i.cs"
|
||
/* 回溯算法:子集和 I */
|
||
void backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {
|
||
// 子集和等于 target 时,记录解
|
||
if (target == 0) {
|
||
res.Add(new List<int>(state));
|
||
return;
|
||
}
|
||
// 遍历所有选择
|
||
// 剪枝二:从 start 开始遍历,避免生成重复子集
|
||
for (int i = start; i < choices.Length; i++) {
|
||
// 剪枝一:若子集和超过 target ,则直接结束循环
|
||
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
|
||
if (target - choices[i] < 0) {
|
||
break;
|
||
}
|
||
// 尝试:做出选择,更新 target, start
|
||
state.Add(choices[i]);
|
||
// 进行下一轮选择
|
||
backtrack(state, target - choices[i], choices, i, res);
|
||
// 回退:撤销选择,恢复到之前的状态
|
||
state.RemoveAt(state.Count - 1);
|
||
}
|
||
}
|
||
|
||
/* 求解子集和 I */
|
||
List<List<int>> subsetSumI(int[] nums, int target) {
|
||
List<int> state = new List<int>(); // 状态(子集)
|
||
Array.Sort(nums); // 对 nums 进行排序
|
||
int start = 0; // 遍历起始点
|
||
List<List<int>> res = new List<List<int>>(); // 结果列表(子集列表)
|
||
backtrack(state, target, nums, start, res);
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="subset_sum_i.swift"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumI}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="subset_sum_i.zig"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumI}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="subset_sum_i.dart"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumI}
|
||
```
|
||
|
||
如下图所示,为将数组 $[3, 4, 5]$ 和目标元素 $9$ 输入到以上代码后的整体回溯过程。
|
||
|
||
![子集和 I 回溯过程](subset_sum_problem.assets/subset_sum_i.png)
|
||
|
||
<p align="center"> Fig. 子集和 I 回溯过程 </p>
|
||
|
||
## 12.3.3. 相等元素剪枝
|
||
|
||
!!! question
|
||
|
||
给定一个正整数数组 `nums` 和一个目标正整数 `target` ,请找出所有可能的组合,使得组合中的元素和等于 `target` 。**给定数组可能包含重复元素,每个元素只可被选择一次**。请以列表形式返回这些组合,列表中不应包含重复组合。
|
||
|
||
相比于上题,**本题的输入数组可能包含重复元素**,这引入了新的问题。例如,给定数组 $[4, \hat{4}, 5]$ 和目标元素 $9$ ,则现有代码的输出结果为 $[4, 5], [\hat{4}, 5]$ ,也出现了重复子集。**造成这种重复的原因是相等元素在某轮中被多次选择**。如下图所示,第一轮共有三个选择,其中两个都为 $4$ ,会产生两个重复的搜索分支,从而输出重复子集;同理,第二轮的两个 $4$ 也会产生重复子集。
|
||
|
||
![相等元素导致的重复子集](subset_sum_problem.assets/subset_sum_ii_repeat.png)
|
||
|
||
<p align="center"> Fig. 相等元素导致的重复子集 </p>
|
||
|
||
为解决此问题,**我们需要限制相等元素在每一轮中只被选择一次**。实现方式比较巧妙:由于数组是已排序的,因此相等元素都是相邻的。利用该特性,在某轮选择中,若当前元素与其左边元素相等,则说明它已经被选择过,因此直接跳过当前元素。
|
||
|
||
与此同时,**本题规定数组元素只能被选择一次**。幸运的是,我们也可以利用变量 `start` 来满足该约束:当做出选择 $x_{i}$ 后,设定下一轮从索引 $i + 1$ 开始向后遍历。这样即能去除重复子集,也能避免重复选择相等元素。
|
||
|
||
=== "Java"
|
||
|
||
```java title="subset_sum_ii.java"
|
||
/* 回溯算法:子集和 II */
|
||
void backtrack(List<Integer> state, int target, int[] choices, int start, List<List<Integer>> res) {
|
||
// 子集和等于 target 时,记录解
|
||
if (target == 0) {
|
||
res.add(new ArrayList<>(state));
|
||
return;
|
||
}
|
||
// 遍历所有选择
|
||
// 剪枝二:从 start 开始遍历,避免生成重复子集
|
||
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
|
||
for (int i = start; i < choices.length; i++) {
|
||
// 剪枝一:若子集和超过 target ,则直接结束循环
|
||
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
|
||
if (target - choices[i] < 0) {
|
||
break;
|
||
}
|
||
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
|
||
if (i > start && choices[i] == choices[i - 1]) {
|
||
continue;
|
||
}
|
||
// 尝试:做出选择,更新 target, start
|
||
state.add(choices[i]);
|
||
// 进行下一轮选择
|
||
backtrack(state, target - choices[i], choices, i + 1, res);
|
||
// 回退:撤销选择,恢复到之前的状态
|
||
state.remove(state.size() - 1);
|
||
}
|
||
}
|
||
|
||
/* 求解子集和 II */
|
||
List<List<Integer>> subsetSumII(int[] nums, int target) {
|
||
List<Integer> state = new ArrayList<>(); // 状态(子集)
|
||
Arrays.sort(nums); // 对 nums 进行排序
|
||
int start = 0; // 遍历起始点
|
||
List<List<Integer>> res = new ArrayList<>(); // 结果列表(子集列表)
|
||
backtrack(state, target, nums, start, res);
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="subset_sum_ii.cpp"
|
||
/* 回溯算法:子集和 II */
|
||
void backtrack(vector<int> &state, int target, vector<int> &choices, int start, vector<vector<int>> &res) {
|
||
// 子集和等于 target 时,记录解
|
||
if (target == 0) {
|
||
res.push_back(state);
|
||
return;
|
||
}
|
||
// 遍历所有选择
|
||
// 剪枝二:从 start 开始遍历,避免生成重复子集
|
||
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
|
||
for (int i = start; i < choices.size(); i++) {
|
||
// 剪枝一:若子集和超过 target ,则直接结束循环
|
||
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
|
||
if (target - choices[i] < 0) {
|
||
break;
|
||
}
|
||
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
|
||
if (i > start && choices[i] == choices[i - 1]) {
|
||
continue;
|
||
}
|
||
// 尝试:做出选择,更新 target, start
|
||
state.push_back(choices[i]);
|
||
// 进行下一轮选择
|
||
backtrack(state, target - choices[i], choices, i + 1, res);
|
||
// 回退:撤销选择,恢复到之前的状态
|
||
state.pop_back();
|
||
}
|
||
}
|
||
|
||
/* 求解子集和 II */
|
||
vector<vector<int>> subsetSumII(vector<int> &nums, int target) {
|
||
vector<int> state; // 状态(子集)
|
||
sort(nums.begin(), nums.end()); // 对 nums 进行排序
|
||
int start = 0; // 遍历起始点
|
||
vector<vector<int>> res; // 结果列表(子集列表)
|
||
backtrack(state, target, nums, start, res);
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="subset_sum_ii.py"
|
||
def backtrack(
|
||
state: list[int], target: int, choices: list[int], start: int, res: list[list[int]]
|
||
):
|
||
"""回溯算法:子集和 II"""
|
||
# 子集和等于 target 时,记录解
|
||
if target == 0:
|
||
res.append(list(state))
|
||
return
|
||
# 遍历所有选择
|
||
# 剪枝二:从 start 开始遍历,避免生成重复子集
|
||
# 剪枝三:从 start 开始遍历,避免重复选择同一元素
|
||
for i in range(start, len(choices)):
|
||
# 剪枝一:若子集和超过 target ,则直接结束循环
|
||
# 这是因为数组已排序,后边元素更大,子集和一定超过 target
|
||
if target - choices[i] < 0:
|
||
break
|
||
# 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
|
||
if i > start and choices[i] == choices[i - 1]:
|
||
continue
|
||
# 尝试:做出选择,更新 target, start
|
||
state.append(choices[i])
|
||
# 进行下一轮选择
|
||
backtrack(state, target - choices[i], choices, i + 1, res)
|
||
# 回退:撤销选择,恢复到之前的状态
|
||
state.pop()
|
||
|
||
def subset_sum_ii(nums: list[int], target: int) -> list[list[int]]:
|
||
"""求解子集和 II"""
|
||
state = [] # 状态(子集)
|
||
nums.sort() # 对 nums 进行排序
|
||
start = 0 # 遍历起始点
|
||
res = [] # 结果列表(子集列表)
|
||
backtrack(state, target, nums, start, res)
|
||
return res
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="subset_sum_ii.go"
|
||
/* 回溯算法:子集和 II */
|
||
func backtrackSubsetSumII(start, target int, state, choices *[]int, res *[][]int) {
|
||
// 子集和等于 target 时,记录解
|
||
if target == 0 {
|
||
newState := append([]int{}, *state...)
|
||
*res = append(*res, newState)
|
||
return
|
||
}
|
||
// 遍历所有选择
|
||
// 剪枝二:从 start 开始遍历,避免生成重复子集
|
||
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
|
||
for i := start; i < len(*choices); i++ {
|
||
// 剪枝一:若子集和超过 target ,则直接结束循环
|
||
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
|
||
if target-(*choices)[i] < 0 {
|
||
break
|
||
}
|
||
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
|
||
if i > start && (*choices)[i] == (*choices)[i-1] {
|
||
continue
|
||
}
|
||
// 尝试:做出选择,更新 target, start
|
||
*state = append(*state, (*choices)[i])
|
||
// 进行下一轮选择
|
||
backtrackSubsetSumII(i+1, target-(*choices)[i], state, choices, res)
|
||
// 回退:撤销选择,恢复到之前的状态
|
||
*state = (*state)[:len(*state)-1]
|
||
}
|
||
}
|
||
|
||
/* 求解子集和 II */
|
||
func subsetSumII(nums []int, target int) [][]int {
|
||
state := make([]int, 0) // 状态(子集)
|
||
sort.Ints(nums) // 对 nums 进行排序
|
||
start := 0 // 遍历起始点
|
||
res := make([][]int, 0) // 结果列表(子集列表)
|
||
backtrackSubsetSumII(start, target, &state, &nums, &res)
|
||
return res
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="subset_sum_ii.js"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumII}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="subset_sum_ii.ts"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumII}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="subset_sum_ii.c"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumII}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="subset_sum_ii.cs"
|
||
/* 回溯算法:子集和 II */
|
||
void backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {
|
||
// 子集和等于 target 时,记录解
|
||
if (target == 0) {
|
||
res.Add(new List<int>(state));
|
||
return;
|
||
}
|
||
// 遍历所有选择
|
||
// 剪枝二:从 start 开始遍历,避免生成重复子集
|
||
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
|
||
for (int i = start; i < choices.Length; i++) {
|
||
// 剪枝一:若子集和超过 target ,则直接结束循环
|
||
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
|
||
if (target - choices[i] < 0) {
|
||
break;
|
||
}
|
||
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
|
||
if (i > start && choices[i] == choices[i - 1]) {
|
||
continue;
|
||
}
|
||
// 尝试:做出选择,更新 target, start
|
||
state.Add(choices[i]);
|
||
// 进行下一轮选择
|
||
backtrack(state, target - choices[i], choices, i + 1, res);
|
||
// 回退:撤销选择,恢复到之前的状态
|
||
state.RemoveAt(state.Count - 1);
|
||
}
|
||
}
|
||
|
||
/* 求解子集和 II */
|
||
List<List<int>> subsetSumII(int[] nums, int target) {
|
||
List<int> state = new List<int>(); // 状态(子集)
|
||
Array.Sort(nums); // 对 nums 进行排序
|
||
int start = 0; // 遍历起始点
|
||
List<List<int>> res = new List<List<int>>(); // 结果列表(子集列表)
|
||
backtrack(state, target, nums, start, res);
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="subset_sum_ii.swift"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumII}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="subset_sum_ii.zig"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumII}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="subset_sum_ii.dart"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{subsetSumII}
|
||
```
|
||
|
||
下图展示了数组 $[4, 4, 5]$ 和目标元素 $9$ 的回溯过程,共包含四种剪枝操作。建议你将图示与代码注释相结合,理解整个搜索过程,以及每种剪枝操作是如何工作的。
|
||
|
||
![子集和 II 回溯过程](subset_sum_problem.assets/subset_sum_ii.png)
|
||
|
||
<p align="center"> Fig. 子集和 II 回溯过程 </p>
|