mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 16:26:29 +08:00
1364 lines
40 KiB
Markdown
1364 lines
40 KiB
Markdown
---
|
||
comments: true
|
||
status: new
|
||
---
|
||
|
||
# 14.1 初探动态规划
|
||
|
||
「动态规划 dynamic programming」是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。
|
||
|
||
在本节中,我们从一个经典例题入手,先给出它的暴力回溯解法,观察其中包含的重叠子问题,再逐步导出更高效的动态规划解法。
|
||
|
||
!!! question "爬楼梯"
|
||
|
||
给定一个共有 $n$ 阶的楼梯,你每步可以上 $1$ 阶或者 $2$ 阶,请问有多少种方案可以爬到楼顶。
|
||
|
||
如图 14-1 所示,对于一个 $3$ 阶楼梯,共有 $3$ 种方案可以爬到楼顶。
|
||
|
||
![爬到第 3 阶的方案数量](intro_to_dynamic_programming.assets/climbing_stairs_example.png)
|
||
|
||
<p align="center"> 图 14-1 爬到第 3 阶的方案数量 </p>
|
||
|
||
本题的目标是求解方案数量,**我们可以考虑通过回溯来穷举所有可能性**。具体来说,将爬楼梯想象为一个多轮选择的过程:从地面出发,每轮选择上 $1$ 阶或 $2$ 阶,每当到达楼梯顶部时就将方案数量加 $1$ ,当越过楼梯顶部时就将其剪枝。
|
||
|
||
=== "Java"
|
||
|
||
```java title="climbing_stairs_backtrack.java"
|
||
/* 回溯 */
|
||
void backtrack(List<Integer> choices, int state, int n, List<Integer> res) {
|
||
// 当爬到第 n 阶时,方案数量加 1
|
||
if (state == n)
|
||
res.set(0, res.get(0) + 1);
|
||
// 遍历所有选择
|
||
for (Integer choice : choices) {
|
||
// 剪枝:不允许越过第 n 阶
|
||
if (state + choice > n)
|
||
break;
|
||
// 尝试:做出选择,更新状态
|
||
backtrack(choices, state + choice, n, res);
|
||
// 回退
|
||
}
|
||
}
|
||
|
||
/* 爬楼梯:回溯 */
|
||
int climbingStairsBacktrack(int n) {
|
||
List<Integer> choices = Arrays.asList(1, 2); // 可选择向上爬 1 或 2 阶
|
||
int state = 0; // 从第 0 阶开始爬
|
||
List<Integer> res = new ArrayList<>();
|
||
res.add(0); // 使用 res[0] 记录方案数量
|
||
backtrack(choices, state, n, res);
|
||
return res.get(0);
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="climbing_stairs_backtrack.cpp"
|
||
/* 回溯 */
|
||
void backtrack(vector<int> &choices, int state, int n, vector<int> &res) {
|
||
// 当爬到第 n 阶时,方案数量加 1
|
||
if (state == n)
|
||
res[0]++;
|
||
// 遍历所有选择
|
||
for (auto &choice : choices) {
|
||
// 剪枝:不允许越过第 n 阶
|
||
if (state + choice > n)
|
||
break;
|
||
// 尝试:做出选择,更新状态
|
||
backtrack(choices, state + choice, n, res);
|
||
// 回退
|
||
}
|
||
}
|
||
|
||
/* 爬楼梯:回溯 */
|
||
int climbingStairsBacktrack(int n) {
|
||
vector<int> choices = {1, 2}; // 可选择向上爬 1 或 2 阶
|
||
int state = 0; // 从第 0 阶开始爬
|
||
vector<int> res = {0}; // 使用 res[0] 记录方案数量
|
||
backtrack(choices, state, n, res);
|
||
return res[0];
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="climbing_stairs_backtrack.py"
|
||
def backtrack(choices: list[int], state: int, n: int, res: list[int]) -> int:
|
||
"""回溯"""
|
||
# 当爬到第 n 阶时,方案数量加 1
|
||
if state == n:
|
||
res[0] += 1
|
||
# 遍历所有选择
|
||
for choice in choices:
|
||
# 剪枝:不允许越过第 n 阶
|
||
if state + choice > n:
|
||
break
|
||
# 尝试:做出选择,更新状态
|
||
backtrack(choices, state + choice, n, res)
|
||
# 回退
|
||
|
||
def climbing_stairs_backtrack(n: int) -> int:
|
||
"""爬楼梯:回溯"""
|
||
choices = [1, 2] # 可选择向上爬 1 或 2 阶
|
||
state = 0 # 从第 0 阶开始爬
|
||
res = [0] # 使用 res[0] 记录方案数量
|
||
backtrack(choices, state, n, res)
|
||
return res[0]
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="climbing_stairs_backtrack.go"
|
||
/* 回溯 */
|
||
func backtrack(choices []int, state, n int, res []int) {
|
||
// 当爬到第 n 阶时,方案数量加 1
|
||
if state == n {
|
||
res[0] = res[0] + 1
|
||
}
|
||
// 遍历所有选择
|
||
for _, choice := range choices {
|
||
// 剪枝:不允许越过第 n 阶
|
||
if state+choice > n {
|
||
break
|
||
}
|
||
// 尝试:做出选择,更新状态
|
||
backtrack(choices, state+choice, n, res)
|
||
// 回退
|
||
}
|
||
}
|
||
|
||
/* 爬楼梯:回溯 */
|
||
func climbingStairsBacktrack(n int) int {
|
||
// 可选择向上爬 1 或 2 阶
|
||
choices := []int{1, 2}
|
||
// 从第 0 阶开始爬
|
||
state := 0
|
||
res := make([]int, 1)
|
||
// 使用 res[0] 记录方案数量
|
||
res[0] = 0
|
||
backtrack(choices, state, n, res)
|
||
return res[0]
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title="climbing_stairs_backtrack.js"
|
||
/* 回溯 */
|
||
function backtrack(choices, state, n, res) {
|
||
// 当爬到第 n 阶时,方案数量加 1
|
||
if (state === n) res.set(0, res.get(0) + 1);
|
||
// 遍历所有选择
|
||
for (const choice of choices) {
|
||
// 剪枝:不允许越过第 n 阶
|
||
if (state + choice > n) break;
|
||
// 尝试:做出选择,更新状态
|
||
backtrack(choices, state + choice, n, res);
|
||
// 回退
|
||
}
|
||
}
|
||
|
||
/* 爬楼梯:回溯 */
|
||
function climbingStairsBacktrack(n) {
|
||
const choices = [1, 2]; // 可选择向上爬 1 或 2 阶
|
||
const state = 0; // 从第 0 阶开始爬
|
||
const res = new Map();
|
||
res.set(0, 0); // 使用 res[0] 记录方案数量
|
||
backtrack(choices, state, n, res);
|
||
return res.get(0);
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title="climbing_stairs_backtrack.ts"
|
||
/* 回溯 */
|
||
function backtrack(
|
||
choices: number[],
|
||
state: number,
|
||
n: number,
|
||
res: Map<0, any>
|
||
): void {
|
||
// 当爬到第 n 阶时,方案数量加 1
|
||
if (state === n) res.set(0, res.get(0) + 1);
|
||
// 遍历所有选择
|
||
for (const choice of choices) {
|
||
// 剪枝:不允许越过第 n 阶
|
||
if (state + choice > n) break;
|
||
// 尝试:做出选择,更新状态
|
||
backtrack(choices, state + choice, n, res);
|
||
// 回退
|
||
}
|
||
}
|
||
|
||
/* 爬楼梯:回溯 */
|
||
function climbingStairsBacktrack(n: number): number {
|
||
const choices = [1, 2]; // 可选择向上爬 1 或 2 阶
|
||
const state = 0; // 从第 0 阶开始爬
|
||
const res = new Map();
|
||
res.set(0, 0); // 使用 res[0] 记录方案数量
|
||
backtrack(choices, state, n, res);
|
||
return res.get(0);
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="climbing_stairs_backtrack.c"
|
||
[class]{}-[func]{backtrack}
|
||
|
||
[class]{}-[func]{climbingStairsBacktrack}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="climbing_stairs_backtrack.cs"
|
||
/* 回溯 */
|
||
void backtrack(List<int> choices, int state, int n, List<int> res) {
|
||
// 当爬到第 n 阶时,方案数量加 1
|
||
if (state == n)
|
||
res[0]++;
|
||
// 遍历所有选择
|
||
foreach (int choice in choices) {
|
||
// 剪枝:不允许越过第 n 阶
|
||
if (state + choice > n)
|
||
break;
|
||
// 尝试:做出选择,更新状态
|
||
backtrack(choices, state + choice, n, res);
|
||
// 回退
|
||
}
|
||
}
|
||
|
||
/* 爬楼梯:回溯 */
|
||
int climbingStairsBacktrack(int n) {
|
||
List<int> choices = new List<int> { 1, 2 }; // 可选择向上爬 1 或 2 阶
|
||
int state = 0; // 从第 0 阶开始爬
|
||
List<int> res = new List<int> { 0 }; // 使用 res[0] 记录方案数量
|
||
backtrack(choices, state, n, res);
|
||
return res[0];
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="climbing_stairs_backtrack.swift"
|
||
/* 回溯 */
|
||
func backtrack(choices: [Int], state: Int, n: Int, res: inout [Int]) {
|
||
// 当爬到第 n 阶时,方案数量加 1
|
||
if state == n {
|
||
res[0] += 1
|
||
}
|
||
// 遍历所有选择
|
||
for choice in choices {
|
||
// 剪枝:不允许越过第 n 阶
|
||
if state + choice > n {
|
||
break
|
||
}
|
||
backtrack(choices: choices, state: state + choice, n: n, res: &res)
|
||
}
|
||
}
|
||
|
||
/* 爬楼梯:回溯 */
|
||
func climbingStairsBacktrack(n: Int) -> Int {
|
||
let choices = [1, 2] // 可选择向上爬 1 或 2 阶
|
||
let state = 0 // 从第 0 阶开始爬
|
||
var res: [Int] = []
|
||
res.append(0) // 使用 res[0] 记录方案数量
|
||
backtrack(choices: choices, state: state, n: n, res: &res)
|
||
return res[0]
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="climbing_stairs_backtrack.zig"
|
||
// 回溯
|
||
fn backtrack(choices: []i32, state: i32, n: i32, res: std.ArrayList(i32)) void {
|
||
// 当爬到第 n 阶时,方案数量加 1
|
||
if (state == n) {
|
||
res.items[0] = res.items[0] + 1;
|
||
}
|
||
// 遍历所有选择
|
||
for (choices) |choice| {
|
||
// 剪枝:不允许越过第 n 阶
|
||
if (state + choice > n) {
|
||
break;
|
||
}
|
||
// 尝试:做出选择,更新状态
|
||
backtrack(choices, state + choice, n, res);
|
||
// 回退
|
||
}
|
||
}
|
||
|
||
// 爬楼梯:回溯
|
||
fn climbingStairsBacktrack(n: usize) !i32 {
|
||
var choices = [_]i32{ 1, 2 }; // 可选择向上爬 1 或 2 阶
|
||
var state: i32 = 0; // 从第 0 阶开始爬
|
||
var res = std.ArrayList(i32).init(std.heap.page_allocator);
|
||
defer res.deinit();
|
||
try res.append(0); // 使用 res[0] 记录方案数量
|
||
backtrack(&choices, state, @intCast(n), res);
|
||
return res.items[0];
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="climbing_stairs_backtrack.dart"
|
||
/* 回溯 */
|
||
void backtrack(List<int> choices, int state, int n, List<int> res) {
|
||
// 当爬到第 n 阶时,方案数量加 1
|
||
if (state == n) {
|
||
res[0]++;
|
||
}
|
||
// 遍历所有选择
|
||
for (int choice in choices) {
|
||
// 剪枝:不允许越过第 n 阶
|
||
if (state + choice > n) break;
|
||
// 尝试:做出选择,更新状态
|
||
backtrack(choices, state + choice, n, res);
|
||
// 回退
|
||
}
|
||
}
|
||
|
||
/* 爬楼梯:回溯 */
|
||
int climbingStairsBacktrack(int n) {
|
||
List<int> choices = [1, 2]; // 可选择向上爬 1 或 2 阶
|
||
int state = 0; // 从第 0 阶开始爬
|
||
List<int> res = [];
|
||
res.add(0); // 使用 res[0] 记录方案数量
|
||
backtrack(choices, state, n, res);
|
||
return res[0];
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title="climbing_stairs_backtrack.rs"
|
||
/* 回溯 */
|
||
fn backtrack(choices: &[i32], state: i32, n: i32, res: &mut [i32]) {
|
||
// 当爬到第 n 阶时,方案数量加 1
|
||
if state == n { res[0] = res[0] + 1; }
|
||
// 遍历所有选择
|
||
for &choice in choices {
|
||
// 剪枝:不允许越过第 n 阶
|
||
if state + choice > n { break; }
|
||
// 尝试:做出选择,更新状态
|
||
backtrack(choices, state + choice, n, res);
|
||
// 回退
|
||
}
|
||
}
|
||
|
||
/* 爬楼梯:回溯 */
|
||
fn climbing_stairs_backtrack(n: usize) -> i32 {
|
||
let choices = vec![ 1, 2 ]; // 可选择向上爬 1 或 2 阶
|
||
let state = 0; // 从第 0 阶开始爬
|
||
let mut res = Vec::new();
|
||
res.push(0); // 使用 res[0] 记录方案数量
|
||
backtrack(&choices, state, n as i32, &mut res);
|
||
res[0]
|
||
}
|
||
```
|
||
|
||
## 14.1.1 方法一:暴力搜索
|
||
|
||
回溯算法通常并不显式地对问题进行拆解,而是将问题看作一系列决策步骤,通过试探和剪枝,搜索所有可能的解。
|
||
|
||
我们可以尝试从问题分解的角度分析这道题。设爬到第 $i$ 阶共有 $dp[i]$ 种方案,那么 $dp[i]$ 就是原问题,其子问题包括:
|
||
|
||
$$
|
||
dp[i-1], dp[i-2], \dots, dp[2], dp[1]
|
||
$$
|
||
|
||
由于每轮只能上 $1$ 阶或 $2$ 阶,因此当我们站在第 $i$ 阶楼梯上时,上一轮只可能站在第 $i - 1$ 阶或第 $i - 2$ 阶上。换句话说,我们只能从第 $i -1$ 阶或第 $i - 2$ 阶前往第 $i$ 阶。
|
||
|
||
由此便可得出一个重要推论:**爬到第 $i - 1$ 阶的方案数加上爬到第 $i - 2$ 阶的方案数就等于爬到第 $i$ 阶的方案数**。公式如下:
|
||
|
||
$$
|
||
dp[i] = dp[i-1] + dp[i-2]
|
||
$$
|
||
|
||
这意味着在爬楼梯问题中,各个子问题之间存在递推关系,**原问题的解可以由子问题的解构建得来**。图 14-2 展示了该递推关系。
|
||
|
||
![方案数量递推关系](intro_to_dynamic_programming.assets/climbing_stairs_state_transfer.png)
|
||
|
||
<p align="center"> 图 14-2 方案数量递推关系 </p>
|
||
|
||
我们可以根据递推公式得到暴力搜索解法。以 $dp[n]$ 为起始点,**递归地将一个较大问题拆解为两个较小问题的和**,直至到达最小子问题 $dp[1]$ 和 $dp[2]$ 时返回。其中,最小子问题的解是已知的,即 $dp[1] = 1$、$dp[2] = 2$ ,表示爬到第 $1$、$2$ 阶分别有 $1$、$2$ 种方案。
|
||
|
||
观察以下代码,它和标准回溯代码都属于深度优先搜索,但更加简洁。
|
||
|
||
=== "Java"
|
||
|
||
```java title="climbing_stairs_dfs.java"
|
||
/* 搜索 */
|
||
int dfs(int i) {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (i == 1 || i == 2)
|
||
return i;
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
int count = dfs(i - 1) + dfs(i - 2);
|
||
return count;
|
||
}
|
||
|
||
/* 爬楼梯:搜索 */
|
||
int climbingStairsDFS(int n) {
|
||
return dfs(n);
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="climbing_stairs_dfs.cpp"
|
||
/* 搜索 */
|
||
int dfs(int i) {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (i == 1 || i == 2)
|
||
return i;
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
int count = dfs(i - 1) + dfs(i - 2);
|
||
return count;
|
||
}
|
||
|
||
/* 爬楼梯:搜索 */
|
||
int climbingStairsDFS(int n) {
|
||
return dfs(n);
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="climbing_stairs_dfs.py"
|
||
def dfs(i: int) -> int:
|
||
"""搜索"""
|
||
# 已知 dp[1] 和 dp[2] ,返回之
|
||
if i == 1 or i == 2:
|
||
return i
|
||
# dp[i] = dp[i-1] + dp[i-2]
|
||
count = dfs(i - 1) + dfs(i - 2)
|
||
return count
|
||
|
||
def climbing_stairs_dfs(n: int) -> int:
|
||
"""爬楼梯:搜索"""
|
||
return dfs(n)
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="climbing_stairs_dfs.go"
|
||
/* 搜索 */
|
||
func dfs(i int) int {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if i == 1 || i == 2 {
|
||
return i
|
||
}
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
count := dfs(i-1) + dfs(i-2)
|
||
return count
|
||
}
|
||
|
||
/* 爬楼梯:搜索 */
|
||
func climbingStairsDFS(n int) int {
|
||
return dfs(n)
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title="climbing_stairs_dfs.js"
|
||
/* 搜索 */
|
||
function dfs(i) {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (i === 1 || i === 2) return i;
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
const count = dfs(i - 1) + dfs(i - 2);
|
||
return count;
|
||
}
|
||
|
||
/* 爬楼梯:搜索 */
|
||
function climbingStairsDFS(n) {
|
||
return dfs(n);
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title="climbing_stairs_dfs.ts"
|
||
/* 搜索 */
|
||
function dfs(i: number): number {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (i === 1 || i === 2) return i;
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
const count = dfs(i - 1) + dfs(i - 2);
|
||
return count;
|
||
}
|
||
|
||
/* 爬楼梯:搜索 */
|
||
function climbingStairsDFS(n: number): number {
|
||
return dfs(n);
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="climbing_stairs_dfs.c"
|
||
[class]{}-[func]{dfs}
|
||
|
||
[class]{}-[func]{climbingStairsDFS}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="climbing_stairs_dfs.cs"
|
||
/* 搜索 */
|
||
int dfs(int i) {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (i == 1 || i == 2)
|
||
return i;
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
int count = dfs(i - 1) + dfs(i - 2);
|
||
return count;
|
||
}
|
||
|
||
/* 爬楼梯:搜索 */
|
||
int climbingStairsDFS(int n) {
|
||
return dfs(n);
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="climbing_stairs_dfs.swift"
|
||
/* 搜索 */
|
||
func dfs(i: Int) -> Int {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if i == 1 || i == 2 {
|
||
return i
|
||
}
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
let count = dfs(i: i - 1) + dfs(i: i - 2)
|
||
return count
|
||
}
|
||
|
||
/* 爬楼梯:搜索 */
|
||
func climbingStairsDFS(n: Int) -> Int {
|
||
dfs(i: n)
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="climbing_stairs_dfs.zig"
|
||
// 搜索
|
||
fn dfs(i: usize) i32 {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (i == 1 or i == 2) {
|
||
return @intCast(i);
|
||
}
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
var count = dfs(i - 1) + dfs(i - 2);
|
||
return count;
|
||
}
|
||
|
||
// 爬楼梯:搜索
|
||
fn climbingStairsDFS(comptime n: usize) i32 {
|
||
return dfs(n);
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="climbing_stairs_dfs.dart"
|
||
/* 搜索 */
|
||
int dfs(int i) {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (i == 1 || i == 2) return i;
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
int count = dfs(i - 1) + dfs(i - 2);
|
||
return count;
|
||
}
|
||
|
||
/* 爬楼梯:搜索 */
|
||
int climbingStairsDFS(int n) {
|
||
return dfs(n);
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title="climbing_stairs_dfs.rs"
|
||
/* 搜索 */
|
||
fn dfs(i: usize) -> i32 {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if i == 1 || i == 2 { return i as i32; }
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
let count = dfs(i - 1) + dfs(i - 2);
|
||
count
|
||
}
|
||
|
||
/* 爬楼梯:搜索 */
|
||
fn climbing_stairs_dfs(n: usize) -> i32 {
|
||
dfs(n)
|
||
}
|
||
```
|
||
|
||
图 14-3 展示了暴力搜索形成的递归树。对于问题 $dp[n]$ ,其递归树的深度为 $n$ ,时间复杂度为 $O(2^n)$ 。指数阶属于爆炸式增长,如果我们输入一个比较大的 $n$ ,则会陷入漫长的等待之中。
|
||
|
||
![爬楼梯对应递归树](intro_to_dynamic_programming.assets/climbing_stairs_dfs_tree.png)
|
||
|
||
<p align="center"> 图 14-3 爬楼梯对应递归树 </p>
|
||
|
||
观察图 14-3 ,**指数阶的时间复杂度是由于“重叠子问题”导致的**。例如 $dp[9]$ 被分解为 $dp[8]$ 和 $dp[7]$ ,$dp[8]$ 被分解为 $dp[7]$ 和 $dp[6]$ ,两者都包含子问题 $dp[7]$ 。
|
||
|
||
以此类推,子问题中包含更小的重叠子问题,子子孙孙无穷尽也。绝大部分计算资源都浪费在这些重叠的问题上。
|
||
|
||
## 14.1.2 方法二:记忆化搜索
|
||
|
||
为了提升算法效率,**我们希望所有的重叠子问题都只被计算一次**。为此,我们声明一个数组 `mem` 来记录每个子问题的解,并在搜索过程中将重叠子问题剪枝。
|
||
|
||
1. 当首次计算 $dp[i]$ 时,我们将其记录至 `mem[i]` ,以便之后使用。
|
||
2. 当再次需要计算 $dp[i]$ 时,我们便可直接从 `mem[i]` 中获取结果,从而避免重复计算该子问题。
|
||
|
||
=== "Java"
|
||
|
||
```java title="climbing_stairs_dfs_mem.java"
|
||
/* 记忆化搜索 */
|
||
int dfs(int i, int[] mem) {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (i == 1 || i == 2)
|
||
return i;
|
||
// 若存在记录 dp[i] ,则直接返回之
|
||
if (mem[i] != -1)
|
||
return mem[i];
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
||
// 记录 dp[i]
|
||
mem[i] = count;
|
||
return count;
|
||
}
|
||
|
||
/* 爬楼梯:记忆化搜索 */
|
||
int climbingStairsDFSMem(int n) {
|
||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||
int[] mem = new int[n + 1];
|
||
Arrays.fill(mem, -1);
|
||
return dfs(n, mem);
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="climbing_stairs_dfs_mem.cpp"
|
||
/* 记忆化搜索 */
|
||
int dfs(int i, vector<int> &mem) {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (i == 1 || i == 2)
|
||
return i;
|
||
// 若存在记录 dp[i] ,则直接返回之
|
||
if (mem[i] != -1)
|
||
return mem[i];
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
||
// 记录 dp[i]
|
||
mem[i] = count;
|
||
return count;
|
||
}
|
||
|
||
/* 爬楼梯:记忆化搜索 */
|
||
int climbingStairsDFSMem(int n) {
|
||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||
vector<int> mem(n + 1, -1);
|
||
return dfs(n, mem);
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="climbing_stairs_dfs_mem.py"
|
||
def dfs(i: int, mem: list[int]) -> int:
|
||
"""记忆化搜索"""
|
||
# 已知 dp[1] 和 dp[2] ,返回之
|
||
if i == 1 or i == 2:
|
||
return i
|
||
# 若存在记录 dp[i] ,则直接返回之
|
||
if mem[i] != -1:
|
||
return mem[i]
|
||
# dp[i] = dp[i-1] + dp[i-2]
|
||
count = dfs(i - 1, mem) + dfs(i - 2, mem)
|
||
# 记录 dp[i]
|
||
mem[i] = count
|
||
return count
|
||
|
||
def climbing_stairs_dfs_mem(n: int) -> int:
|
||
"""爬楼梯:记忆化搜索"""
|
||
# mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||
mem = [-1] * (n + 1)
|
||
return dfs(n, mem)
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="climbing_stairs_dfs_mem.go"
|
||
/* 记忆化搜索 */
|
||
func dfsMem(i int, mem []int) int {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if i == 1 || i == 2 {
|
||
return i
|
||
}
|
||
// 若存在记录 dp[i] ,则直接返回之
|
||
if mem[i] != -1 {
|
||
return mem[i]
|
||
}
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
count := dfsMem(i-1, mem) + dfsMem(i-2, mem)
|
||
// 记录 dp[i]
|
||
mem[i] = count
|
||
return count
|
||
}
|
||
|
||
/* 爬楼梯:记忆化搜索 */
|
||
func climbingStairsDFSMem(n int) int {
|
||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||
mem := make([]int, n+1)
|
||
for i := range mem {
|
||
mem[i] = -1
|
||
}
|
||
return dfsMem(n, mem)
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title="climbing_stairs_dfs_mem.js"
|
||
/* 记忆化搜索 */
|
||
function dfs(i, mem) {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (i === 1 || i === 2) return i;
|
||
// 若存在记录 dp[i] ,则直接返回之
|
||
if (mem[i] != -1) return mem[i];
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
const count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
||
// 记录 dp[i]
|
||
mem[i] = count;
|
||
return count;
|
||
}
|
||
|
||
/* 爬楼梯:记忆化搜索 */
|
||
function climbingStairsDFSMem(n) {
|
||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||
const mem = new Array(n + 1).fill(-1);
|
||
return dfs(n, mem);
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title="climbing_stairs_dfs_mem.ts"
|
||
/* 记忆化搜索 */
|
||
function dfs(i: number, mem: number[]): number {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (i === 1 || i === 2) return i;
|
||
// 若存在记录 dp[i] ,则直接返回之
|
||
if (mem[i] != -1) return mem[i];
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
const count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
||
// 记录 dp[i]
|
||
mem[i] = count;
|
||
return count;
|
||
}
|
||
|
||
/* 爬楼梯:记忆化搜索 */
|
||
function climbingStairsDFSMem(n: number): number {
|
||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||
const mem = new Array(n + 1).fill(-1);
|
||
return dfs(n, mem);
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="climbing_stairs_dfs_mem.c"
|
||
[class]{}-[func]{dfs}
|
||
|
||
[class]{}-[func]{climbingStairsDFSMem}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="climbing_stairs_dfs_mem.cs"
|
||
/* 记忆化搜索 */
|
||
int dfs(int i, int[] mem) {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (i == 1 || i == 2)
|
||
return i;
|
||
// 若存在记录 dp[i] ,则直接返回之
|
||
if (mem[i] != -1)
|
||
return mem[i];
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
||
// 记录 dp[i]
|
||
mem[i] = count;
|
||
return count;
|
||
}
|
||
|
||
/* 爬楼梯:记忆化搜索 */
|
||
int climbingStairsDFSMem(int n) {
|
||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||
int[] mem = new int[n + 1];
|
||
Array.Fill(mem, -1);
|
||
return dfs(n, mem);
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="climbing_stairs_dfs_mem.swift"
|
||
/* 记忆化搜索 */
|
||
func dfs(i: Int, mem: inout [Int]) -> Int {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if i == 1 || i == 2 {
|
||
return i
|
||
}
|
||
// 若存在记录 dp[i] ,则直接返回之
|
||
if mem[i] != -1 {
|
||
return mem[i]
|
||
}
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
let count = dfs(i: i - 1, mem: &mem) + dfs(i: i - 2, mem: &mem)
|
||
// 记录 dp[i]
|
||
mem[i] = count
|
||
return count
|
||
}
|
||
|
||
/* 爬楼梯:记忆化搜索 */
|
||
func climbingStairsDFSMem(n: Int) -> Int {
|
||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||
var mem = Array(repeating: -1, count: n + 1)
|
||
return dfs(i: n, mem: &mem)
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="climbing_stairs_dfs_mem.zig"
|
||
// 记忆化搜索
|
||
fn dfs(i: usize, mem: []i32) i32 {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (i == 1 or i == 2) {
|
||
return @intCast(i);
|
||
}
|
||
// 若存在记录 dp[i] ,则直接返回之
|
||
if (mem[i] != -1) {
|
||
return mem[i];
|
||
}
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
var count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
||
// 记录 dp[i]
|
||
mem[i] = count;
|
||
return count;
|
||
}
|
||
|
||
// 爬楼梯:记忆化搜索
|
||
fn climbingStairsDFSMem(comptime n: usize) i32 {
|
||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||
var mem = [_]i32{ -1 } ** (n + 1);
|
||
return dfs(n, &mem);
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="climbing_stairs_dfs_mem.dart"
|
||
/* 记忆化搜索 */
|
||
int dfs(int i, List<int> mem) {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (i == 1 || i == 2) return i;
|
||
// 若存在记录 dp[i] ,则直接返回之
|
||
if (mem[i] != -1) return mem[i];
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
||
// 记录 dp[i]
|
||
mem[i] = count;
|
||
return count;
|
||
}
|
||
|
||
/* 爬楼梯:记忆化搜索 */
|
||
int climbingStairsDFSMem(int n) {
|
||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||
List<int> mem = List.filled(n + 1, -1);
|
||
return dfs(n, mem);
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title="climbing_stairs_dfs_mem.rs"
|
||
/* 记忆化搜索 */
|
||
fn dfs(i: usize, mem: &mut [i32]) -> i32 {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if i == 1 || i == 2 { return i as i32; }
|
||
// 若存在记录 dp[i] ,则直接返回之
|
||
if mem[i] != -1 { return mem[i]; }
|
||
// dp[i] = dp[i-1] + dp[i-2]
|
||
let count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
||
// 记录 dp[i]
|
||
mem[i] = count;
|
||
count
|
||
}
|
||
|
||
/* 爬楼梯:记忆化搜索 */
|
||
fn climbing_stairs_dfs_mem(n: usize) -> i32 {
|
||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||
let mut mem = vec![-1; n + 1];
|
||
dfs(n, &mut mem)
|
||
}
|
||
```
|
||
|
||
观察图 14-4 ,**经过记忆化处理后,所有重叠子问题都只需被计算一次,时间复杂度被优化至 $O(n)$** ,这是一个巨大的飞跃。
|
||
|
||
![记忆化搜索对应递归树](intro_to_dynamic_programming.assets/climbing_stairs_dfs_memo_tree.png)
|
||
|
||
<p align="center"> 图 14-4 记忆化搜索对应递归树 </p>
|
||
|
||
## 14.1.3 方法三:动态规划
|
||
|
||
**记忆化搜索是一种“从顶至底”的方法**:我们从原问题(根节点)开始,递归地将较大子问题分解为较小子问题,直至解已知的最小子问题(叶节点)。之后,通过回溯将子问题的解逐层收集,构建出原问题的解。
|
||
|
||
与之相反,**动态规划是一种“从底至顶”的方法**:从最小子问题的解开始,迭代地构建更大子问题的解,直至得到原问题的解。
|
||
|
||
由于动态规划不包含回溯过程,因此只需使用循环迭代实现,无须使用递归。在以下代码中,我们初始化一个数组 `dp` 来存储子问题的解,它起到了记忆化搜索中数组 `mem` 相同的记录作用。
|
||
|
||
=== "Java"
|
||
|
||
```java title="climbing_stairs_dp.java"
|
||
/* 爬楼梯:动态规划 */
|
||
int climbingStairsDP(int n) {
|
||
if (n == 1 || n == 2)
|
||
return n;
|
||
// 初始化 dp 表,用于存储子问题的解
|
||
int[] dp = new int[n + 1];
|
||
// 初始状态:预设最小子问题的解
|
||
dp[1] = 1;
|
||
dp[2] = 2;
|
||
// 状态转移:从较小子问题逐步求解较大子问题
|
||
for (int i = 3; i <= n; i++) {
|
||
dp[i] = dp[i - 1] + dp[i - 2];
|
||
}
|
||
return dp[n];
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="climbing_stairs_dp.cpp"
|
||
/* 爬楼梯:动态规划 */
|
||
int climbingStairsDP(int n) {
|
||
if (n == 1 || n == 2)
|
||
return n;
|
||
// 初始化 dp 表,用于存储子问题的解
|
||
vector<int> dp(n + 1);
|
||
// 初始状态:预设最小子问题的解
|
||
dp[1] = 1;
|
||
dp[2] = 2;
|
||
// 状态转移:从较小子问题逐步求解较大子问题
|
||
for (int i = 3; i <= n; i++) {
|
||
dp[i] = dp[i - 1] + dp[i - 2];
|
||
}
|
||
return dp[n];
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="climbing_stairs_dp.py"
|
||
def climbing_stairs_dp(n: int) -> int:
|
||
"""爬楼梯:动态规划"""
|
||
if n == 1 or n == 2:
|
||
return n
|
||
# 初始化 dp 表,用于存储子问题的解
|
||
dp = [0] * (n + 1)
|
||
# 初始状态:预设最小子问题的解
|
||
dp[1], dp[2] = 1, 2
|
||
# 状态转移:从较小子问题逐步求解较大子问题
|
||
for i in range(3, n + 1):
|
||
dp[i] = dp[i - 1] + dp[i - 2]
|
||
return dp[n]
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="climbing_stairs_dp.go"
|
||
/* 爬楼梯:动态规划 */
|
||
func climbingStairsDP(n int) int {
|
||
if n == 1 || n == 2 {
|
||
return n
|
||
}
|
||
// 初始化 dp 表,用于存储子问题的解
|
||
dp := make([]int, n+1)
|
||
// 初始状态:预设最小子问题的解
|
||
dp[1] = 1
|
||
dp[2] = 2
|
||
// 状态转移:从较小子问题逐步求解较大子问题
|
||
for i := 3; i <= n; i++ {
|
||
dp[i] = dp[i-1] + dp[i-2]
|
||
}
|
||
return dp[n]
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title="climbing_stairs_dp.js"
|
||
/* 爬楼梯:动态规划 */
|
||
function climbingStairsDP(n) {
|
||
if (n === 1 || n === 2) return n;
|
||
// 初始化 dp 表,用于存储子问题的解
|
||
const dp = new Array(n + 1).fill(-1);
|
||
// 初始状态:预设最小子问题的解
|
||
dp[1] = 1;
|
||
dp[2] = 2;
|
||
// 状态转移:从较小子问题逐步求解较大子问题
|
||
for (let i = 3; i <= n; i++) {
|
||
dp[i] = dp[i - 1] + dp[i - 2];
|
||
}
|
||
return dp[n];
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title="climbing_stairs_dp.ts"
|
||
/* 爬楼梯:动态规划 */
|
||
function climbingStairsDP(n: number): number {
|
||
if (n === 1 || n === 2) return n;
|
||
// 初始化 dp 表,用于存储子问题的解
|
||
const dp = new Array(n + 1).fill(-1);
|
||
// 初始状态:预设最小子问题的解
|
||
dp[1] = 1;
|
||
dp[2] = 2;
|
||
// 状态转移:从较小子问题逐步求解较大子问题
|
||
for (let i = 3; i <= n; i++) {
|
||
dp[i] = dp[i - 1] + dp[i - 2];
|
||
}
|
||
return dp[n];
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="climbing_stairs_dp.c"
|
||
[class]{}-[func]{climbingStairsDP}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="climbing_stairs_dp.cs"
|
||
/* 爬楼梯:动态规划 */
|
||
int climbingStairsDP(int n) {
|
||
if (n == 1 || n == 2)
|
||
return n;
|
||
// 初始化 dp 表,用于存储子问题的解
|
||
int[] dp = new int[n + 1];
|
||
// 初始状态:预设最小子问题的解
|
||
dp[1] = 1;
|
||
dp[2] = 2;
|
||
// 状态转移:从较小子问题逐步求解较大子问题
|
||
for (int i = 3; i <= n; i++) {
|
||
dp[i] = dp[i - 1] + dp[i - 2];
|
||
}
|
||
return dp[n];
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="climbing_stairs_dp.swift"
|
||
/* 爬楼梯:动态规划 */
|
||
func climbingStairsDP(n: Int) -> Int {
|
||
if n == 1 || n == 2 {
|
||
return n
|
||
}
|
||
// 初始化 dp 表,用于存储子问题的解
|
||
var dp = Array(repeating: 0, count: n + 1)
|
||
// 初始状态:预设最小子问题的解
|
||
dp[1] = 1
|
||
dp[2] = 2
|
||
// 状态转移:从较小子问题逐步求解较大子问题
|
||
for i in stride(from: 3, through: n, by: 1) {
|
||
dp[i] = dp[i - 1] + dp[i - 2]
|
||
}
|
||
return dp[n]
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="climbing_stairs_dp.zig"
|
||
// 爬楼梯:动态规划
|
||
fn climbingStairsDP(comptime n: usize) i32 {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if (n == 1 or n == 2) {
|
||
return @intCast(n);
|
||
}
|
||
// 初始化 dp 表,用于存储子问题的解
|
||
var dp = [_]i32{-1} ** (n + 1);
|
||
// 初始状态:预设最小子问题的解
|
||
dp[1] = 1;
|
||
dp[2] = 2;
|
||
// 状态转移:从较小子问题逐步求解较大子问题
|
||
for (3..n + 1) |i| {
|
||
dp[i] = dp[i - 1] + dp[i - 2];
|
||
}
|
||
return dp[n];
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="climbing_stairs_dp.dart"
|
||
/* 爬楼梯:动态规划 */
|
||
int climbingStairsDP(int n) {
|
||
if (n == 1 || n == 2) return n;
|
||
// 初始化 dp 表,用于存储子问题的解
|
||
List<int> dp = List.filled(n + 1, 0);
|
||
// 初始状态:预设最小子问题的解
|
||
dp[1] = 1;
|
||
dp[2] = 2;
|
||
// 状态转移:从较小子问题逐步求解较大子问题
|
||
for (int i = 3; i <= n; i++) {
|
||
dp[i] = dp[i - 1] + dp[i - 2];
|
||
}
|
||
return dp[n];
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title="climbing_stairs_dp.rs"
|
||
/* 爬楼梯:动态规划 */
|
||
fn climbing_stairs_dp(n: usize) -> i32 {
|
||
// 已知 dp[1] 和 dp[2] ,返回之
|
||
if n == 1 || n == 2 { return n as i32; }
|
||
// 初始化 dp 表,用于存储子问题的解
|
||
let mut dp = vec![-1; n + 1];
|
||
// 初始状态:预设最小子问题的解
|
||
dp[1] = 1;
|
||
dp[2] = 2;
|
||
// 状态转移:从较小子问题逐步求解较大子问题
|
||
for i in 3..=n {
|
||
dp[i] = dp[i - 1] + dp[i - 2];
|
||
}
|
||
dp[n]
|
||
}
|
||
```
|
||
|
||
图 14-5 模拟了以上代码的执行过程。
|
||
|
||
![爬楼梯的动态规划过程](intro_to_dynamic_programming.assets/climbing_stairs_dp.png)
|
||
|
||
<p align="center"> 图 14-5 爬楼梯的动态规划过程 </p>
|
||
|
||
与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的某个特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如,爬楼梯问题的状态定义为当前所在楼梯阶数 $i$ 。
|
||
|
||
根据以上内容,我们可以总结出动态规划的常用术语。
|
||
|
||
- 将数组 `dp` 称为「$dp$ 表」,$dp[i]$ 表示状态 $i$ 对应子问题的解。
|
||
- 将最小子问题对应的状态(即第 $1$ 和 $2$ 阶楼梯)称为「初始状态」。
|
||
- 将递推公式 $dp[i] = dp[i-1] + dp[i-2]$ 称为「状态转移方程」。
|
||
|
||
## 14.1.4 空间优化
|
||
|
||
细心的你可能发现,**由于 $dp[i]$ 只与 $dp[i-1]$ 和 $dp[i-2]$ 有关,因此我们无须使用一个数组 `dp` 来存储所有子问题的解**,而只需两个变量滚动前进即可。
|
||
|
||
=== "Java"
|
||
|
||
```java title="climbing_stairs_dp.java"
|
||
/* 爬楼梯:空间优化后的动态规划 */
|
||
int climbingStairsDPComp(int n) {
|
||
if (n == 1 || n == 2)
|
||
return n;
|
||
int a = 1, b = 2;
|
||
for (int i = 3; i <= n; i++) {
|
||
int tmp = b;
|
||
b = a + b;
|
||
a = tmp;
|
||
}
|
||
return b;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="climbing_stairs_dp.cpp"
|
||
/* 爬楼梯:空间优化后的动态规划 */
|
||
int climbingStairsDPComp(int n) {
|
||
if (n == 1 || n == 2)
|
||
return n;
|
||
int a = 1, b = 2;
|
||
for (int i = 3; i <= n; i++) {
|
||
int tmp = b;
|
||
b = a + b;
|
||
a = tmp;
|
||
}
|
||
return b;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="climbing_stairs_dp.py"
|
||
def climbing_stairs_dp_comp(n: int) -> int:
|
||
"""爬楼梯:空间优化后的动态规划"""
|
||
if n == 1 or n == 2:
|
||
return n
|
||
a, b = 1, 2
|
||
for _ in range(3, n + 1):
|
||
a, b = b, a + b
|
||
return b
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="climbing_stairs_dp.go"
|
||
/* 爬楼梯:空间优化后的动态规划 */
|
||
func climbingStairsDPComp(n int) int {
|
||
if n == 1 || n == 2 {
|
||
return n
|
||
}
|
||
a, b := 1, 2
|
||
// 状态转移:从较小子问题逐步求解较大子问题
|
||
for i := 3; i <= n; i++ {
|
||
a, b = b, a+b
|
||
}
|
||
return b
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title="climbing_stairs_dp.js"
|
||
/* 爬楼梯:空间优化后的动态规划 */
|
||
function climbingStairsDPComp(n) {
|
||
if (n === 1 || n === 2) return n;
|
||
let a = 1,
|
||
b = 2;
|
||
for (let i = 3; i <= n; i++) {
|
||
const tmp = b;
|
||
b = a + b;
|
||
a = tmp;
|
||
}
|
||
return b;
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title="climbing_stairs_dp.ts"
|
||
/* 爬楼梯:空间优化后的动态规划 */
|
||
function climbingStairsDPComp(n: number): number {
|
||
if (n === 1 || n === 2) return n;
|
||
let a = 1,
|
||
b = 2;
|
||
for (let i = 3; i <= n; i++) {
|
||
const tmp = b;
|
||
b = a + b;
|
||
a = tmp;
|
||
}
|
||
return b;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="climbing_stairs_dp.c"
|
||
[class]{}-[func]{climbingStairsDPComp}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="climbing_stairs_dp.cs"
|
||
/* 爬楼梯:空间优化后的动态规划 */
|
||
int climbingStairsDPComp(int n) {
|
||
if (n == 1 || n == 2)
|
||
return n;
|
||
int a = 1, b = 2;
|
||
for (int i = 3; i <= n; i++) {
|
||
int tmp = b;
|
||
b = a + b;
|
||
a = tmp;
|
||
}
|
||
return b;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="climbing_stairs_dp.swift"
|
||
/* 爬楼梯:空间优化后的动态规划 */
|
||
func climbingStairsDPComp(n: Int) -> Int {
|
||
if n == 1 || n == 2 {
|
||
return n
|
||
}
|
||
var a = 1
|
||
var b = 2
|
||
for _ in stride(from: 3, through: n, by: 1) {
|
||
(a, b) = (b, a + b)
|
||
}
|
||
return b
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="climbing_stairs_dp.zig"
|
||
// 爬楼梯:空间优化后的动态规划
|
||
fn climbingStairsDPComp(comptime n: usize) i32 {
|
||
if (n == 1 or n == 2) {
|
||
return @intCast(n);
|
||
}
|
||
var a: i32 = 1;
|
||
var b: i32 = 2;
|
||
for (3..n + 1) |_| {
|
||
var tmp = b;
|
||
b = a + b;
|
||
a = tmp;
|
||
}
|
||
return b;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="climbing_stairs_dp.dart"
|
||
/* 爬楼梯:空间优化后的动态规划 */
|
||
int climbingStairsDPComp(int n) {
|
||
if (n == 1 || n == 2) return n;
|
||
int a = 1, b = 2;
|
||
for (int i = 3; i <= n; i++) {
|
||
int tmp = b;
|
||
b = a + b;
|
||
a = tmp;
|
||
}
|
||
return b;
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title="climbing_stairs_dp.rs"
|
||
/* 爬楼梯:空间优化后的动态规划 */
|
||
fn climbing_stairs_dp_comp(n: usize) -> i32 {
|
||
if n == 1 || n == 2 { return n as i32; }
|
||
let (mut a, mut b) = (1, 2);
|
||
for _ in 3..=n {
|
||
let tmp = b;
|
||
b = a + b;
|
||
a = tmp;
|
||
}
|
||
b
|
||
}
|
||
```
|
||
|
||
观察以上代码,由于省去了数组 `dp` 占用的空间,因此空间复杂度从 $O(n)$ 降低至 $O(1)$ 。
|
||
|
||
在动态规划问题中,当前状态往往仅与前面有限个状态有关,这时我们可以只保留必要的状态,通过“降维”来节省内存空间。**这种空间优化技巧被称为“滚动变量”或“滚动数组”**。
|