hello-algo/chapter_divide_and_conquer/binary_search_recur.md
2023-07-21 21:53:04 +08:00

240 lines
7.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
comments: true
status: new
---
# 12.2.   分治搜索策略
我们已经学过,搜索算法分为两大类:暴力搜索、自适应搜索。暴力搜索的时间复杂度为 $O(n)$ 。自适应搜索利用特有的数据组织形式或先验信息,可达到 $O(\log n)$ 甚至 $O(1)$ 的时间复杂度。
### 基于分治的搜索算法
实际上,**$O(\log n)$ 的搜索算法通常都是基于分治策略实现的**,例如:
- 二分查找的每一步都将问题(在数组中搜索目标元素)分解为一个小问题(在数组的一半中搜索目标元素),这个过程一直持续到数组为空或找到目标元素为止。
- 树是分治关系的代表在二叉搜索树、AVL 树、堆等数据结构中,各种操作的时间复杂度皆为 $O(\log n)$ 。
分治之所以能够提升搜索效率,是因为暴力搜索每轮只能排除一个选项,**而基于分治的搜索每轮可以排除一半选项**。
### 基于分治实现二分
接下来,我们尝试从分治策略的角度分析二分查找的性质:
- **问题可以被分解**:二分查找递归地将原问题(在数组中进行查找)分解为子问题(在数组的一半中进行查找),这是通过比较中间元素和目标元素来实现的。
- **子问题是独立的**:在二分查找中,每轮只处理一个子问题,它不受另外子问题的影响。
- **子问题的解无需合并**:二分查找旨在查找一个特定元素,因此不需要将子问题的解进行合并。当子问题得到解决时,原问题也会同时得到解决。
在之前章节中,我们基于递推(迭代)实现二分查找。现在,我们尝试基于递归分治来实现它。
问题定义为:**在数组 `nums` 的区间 $[i, j]$ 内查找元素 `target`** ,记为 $f(i, j)$ 。
设数组长度为 $n$ ,则二分查找的流程为:从原问题 $f(0, n-1)$ 开始,每轮排除一半索引区间,递归求解规模减小一半的子问题,直至找到 `target` 或区间为空时返回。
下图展示了在数组中二分查找目标元素 $6$ 的分治过程。
![二分查找的分治过程](binary_search_recur.assets/binary_search_recur.png)
<p align="center"> Fig. 二分查找的分治过程 </p>
如下代码所示,我们声明一个递归函数 `dfs()` 来求解问题 $f(i, j)$ 。
=== "Java"
```java title="binary_search_recur.java"
/* 二分查找:问题 f(i, j) */
int dfs(int[] nums, int target, int i, int j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
int m = (i + j) / 2;
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
int binarySearch(int[] nums, int target) {
int n = nums.length;
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
```
=== "C++"
```cpp title="binary_search_recur.cpp"
/* 二分查找:问题 f(i, j) */
int dfs(vector<int> &nums, int target, int i, int j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
int m = (i + j) / 2;
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
int binarySearch(vector<int> &nums, int target) {
int n = nums.size();
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
```
=== "Python"
```python title="binary_search_recur.py"
def dfs(nums: list[int], target: int, i: int, j: int) -> int:
"""二分查找:问题 f(i, j)"""
# 若区间为空,代表无目标元素,则返回 -1
if i > j:
return -1
# 计算中点索引 m
m = (i + j) // 2
if nums[m] < target:
# 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j)
elif nums[m] > target:
# 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1)
else:
# 找到目标元素,返回其索引
return m
def binary_search(nums: list[int], target: int) -> int:
"""二分查找"""
n = len(nums)
# 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1)
```
=== "Go"
```go title="binary_search_recur.go"
/* 二分查找:问题 f(i, j) */
func dfs(nums []int, target, i, j int) int {
// 如果区间为空,代表没有目标元素,则返回 -1
if i > j {
return -1
}
// 计算索引中点
m := i + ((j - i) >> 1)
//判断中点与目标元素大小
if nums[m] < target {
// 小于则递归右半数组
// 递归子问题 f(m+1, j)
return dfs(nums, target, m+1, j)
} else if nums[m] > target {
// 小于则递归左半数组
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m-1)
} else {
// 找到目标元素,返回其索引
return m
}
}
/* 二分查找 */
func binarySearch(nums []int, target int) int {
n := len(nums)
return dfs(nums, target, 0, n-1)
}
```
=== "JavaScript"
```javascript title="binary_search_recur.js"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```
=== "TypeScript"
```typescript title="binary_search_recur.ts"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```
=== "C"
```c title="binary_search_recur.c"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```
=== "C#"
```csharp title="binary_search_recur.cs"
/* 二分查找:问题 f(i, j) */
int dfs(int[] nums, int target, int i, int j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
int m = (i + j) / 2;
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
int binarySearch(int[] nums, int target) {
int n = nums.Length;
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
```
=== "Swift"
```swift title="binary_search_recur.swift"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```
=== "Zig"
```zig title="binary_search_recur.zig"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```
=== "Dart"
```dart title="binary_search_recur.dart"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```