hello-algo/chapter_backtracking/n_queens_problem.md
2023-07-21 21:53:04 +08:00

20 KiB
Raw Blame History

comments
true

13.4.   N 皇后问题

!!! question

根据国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。给定 $n$ 个皇后和一个 $n \times n$ 大小的棋盘,寻找使得所有皇后之间无法相互攻击的摆放方案。

如下图所示,当 n = 4 时,共可以找到两个解。从回溯算法的角度看,n \times n 大小的棋盘共有 n^2 个格子,给出了所有的选择 choices 。在逐个放置皇后的过程中,棋盘状态在不断地变化,每个时刻的棋盘就是状态 state

4 皇后问题的解

Fig. 4 皇后问题的解

本题共有三个约束条件:多个皇后不能在同一行、同一列和同一对角线。值得注意的是,对角线分为主对角线 \ 和副对角线 / 两种。

n 皇后问题的约束条件

Fig. n 皇后问题的约束条件

皇后放置策略

皇后的数量和棋盘的行数都为 n ,因此我们容易得到第一个推论:棋盘每行都允许且只允许放置一个皇后。这意味着,我们可以采取逐行放置策略:从第一行开始,在每行放置一个皇后,直至最后一行结束。此策略起到了剪枝的作用,它避免了同一行出现多个皇后的所有搜索分支。

下图展示了 4 皇后问题的逐行放置过程。受篇幅限制,下图仅展开了第一行的一个搜索分支。在搜索过程中,我们将不满足列约束和对角线约束的方案都剪枝了。

逐行放置策略

Fig. 逐行放置策略

列与对角线剪枝

为了实现根据列约束剪枝,我们可以利用一个长度为 n 的布尔型数组 cols 记录每一列是否有皇后。在每次决定放置前,我们通过 cols 将已有皇后的列剪枝,并在回溯中动态更新 cols 的状态。

那么,如何处理对角线约束呢?设棋盘中某个格子的行列索引为 (row, col) ,观察矩阵的某条主对角线,我们发现该对角线上所有格子的行索引减列索引相等,即 row - col 为恒定值。换句话说,若两个格子满足 row1 - col1 == row2 - col2 ,则这两个格子一定处在一条主对角线上。

利用该性质,我们可以借助一个数组 diag1 来记录每条主对角线上是否有皇后。注意,n 维方阵 row - col 的范围是 [-n + 1, n - 1] ,因此共有 2n - 1 条主对角线。

处理列约束和对角线约束

Fig. 处理列约束和对角线约束

同理,次对角线上的所有格子的 row + col 是恒定值。我们可以使用同样的方法,借助数组 diag2 来处理次对角线约束。

代码实现

根据以上分析,我们便可以写出 n 皇后的解题代码。

=== "Java"

```java title="n_queens.java"
/* 回溯算法N 皇后 */
void backtrack(int row, int n, List<List<String>> state, List<List<List<String>>> res,
        boolean[] cols, boolean[] diags1, boolean[] diags2) {
    // 当放置完所有行时,记录解
    if (row == n) {
        List<List<String>> copyState = new ArrayList<>();
        for (List<String> sRow : state) {
            copyState.add(new ArrayList<>(sRow));
        }
        res.add(copyState);
        return;
    }
    // 遍历所有列
    for (int col = 0; col < n; col++) {
        // 计算该格子对应的主对角线和副对角线
        int diag1 = row - col + n - 1;
        int diag2 = row + col;
        // 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后
        if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
            // 尝试:将皇后放置在该格子
            state.get(row).set(col, "Q");
            cols[col] = diags1[diag1] = diags2[diag2] = true;
            // 放置下一行
            backtrack(row + 1, n, state, res, cols, diags1, diags2);
            // 回退:将该格子恢复为空位
            state.get(row).set(col, "#");
            cols[col] = diags1[diag1] = diags2[diag2] = false;
        }
    }
}

/* 求解 N 皇后 */
List<List<List<String>>> nQueens(int n) {
    // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
    List<List<String>> state = new ArrayList<>();
    for (int i = 0; i < n; i++) {
        List<String> row = new ArrayList<>();
        for (int j = 0; j < n; j++) {
            row.add("#");
        }
        state.add(row);
    }
    boolean[] cols = new boolean[n]; // 记录列是否有皇后
    boolean[] diags1 = new boolean[2 * n - 1]; // 记录主对角线是否有皇后
    boolean[] diags2 = new boolean[2 * n - 1]; // 记录副对角线是否有皇后
    List<List<List<String>>> res = new ArrayList<>();

    backtrack(0, n, state, res, cols, diags1, diags2);

    return res;
}
```

=== "C++"

```cpp title="n_queens.cpp"
/* 回溯算法N 皇后 */
void backtrack(int row, int n, vector<vector<string>> &state, vector<vector<vector<string>>> &res, vector<bool> &cols,
               vector<bool> &diags1, vector<bool> &diags2) {
    // 当放置完所有行时,记录解
    if (row == n) {
        res.push_back(state);
        return;
    }
    // 遍历所有列
    for (int col = 0; col < n; col++) {
        // 计算该格子对应的主对角线和副对角线
        int diag1 = row - col + n - 1;
        int diag2 = row + col;
        // 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后
        if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
            // 尝试:将皇后放置在该格子
            state[row][col] = "Q";
            cols[col] = diags1[diag1] = diags2[diag2] = true;
            // 放置下一行
            backtrack(row + 1, n, state, res, cols, diags1, diags2);
            // 回退:将该格子恢复为空位
            state[row][col] = "#";
            cols[col] = diags1[diag1] = diags2[diag2] = false;
        }
    }
}

/* 求解 N 皇后 */
vector<vector<vector<string>>> nQueens(int n) {
    // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
    vector<vector<string>> state(n, vector<string>(n, "#"));
    vector<bool> cols(n, false);           // 记录列是否有皇后
    vector<bool> diags1(2 * n - 1, false); // 记录主对角线是否有皇后
    vector<bool> diags2(2 * n - 1, false); // 记录副对角线是否有皇后
    vector<vector<vector<string>>> res;

    backtrack(0, n, state, res, cols, diags1, diags2);

    return res;
}
```

=== "Python"

```python title="n_queens.py"
def backtrack(
    row: int,
    n: int,
    state: list[list[str]],
    res: list[list[list[str]]],
    cols: list[bool],
    diags1: list[bool],
    diags2: list[bool],
):
    """回溯算法N 皇后"""
    # 当放置完所有行时,记录解
    if row == n:
        res.append([list(row) for row in state])
        return
    # 遍历所有列
    for col in range(n):
        # 计算该格子对应的主对角线和副对角线
        diag1 = row - col + n - 1
        diag2 = row + col
        # 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后
        if not cols[col] and not diags1[diag1] and not diags2[diag2]:
            # 尝试:将皇后放置在该格子
            state[row][col] = "Q"
            cols[col] = diags1[diag1] = diags2[diag2] = True
            # 放置下一行
            backtrack(row + 1, n, state, res, cols, diags1, diags2)
            # 回退:将该格子恢复为空位
            state[row][col] = "#"
            cols[col] = diags1[diag1] = diags2[diag2] = False

def n_queens(n: int) -> list[list[list[str]]]:
    """求解 N 皇后"""
    # 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
    state = [["#" for _ in range(n)] for _ in range(n)]
    cols = [False] * n  # 记录列是否有皇后
    diags1 = [False] * (2 * n - 1)  # 记录主对角线是否有皇后
    diags2 = [False] * (2 * n - 1)  # 记录副对角线是否有皇后
    res = []
    backtrack(0, n, state, res, cols, diags1, diags2)

    return res
```

=== "Go"

```go title="n_queens.go"
/* 回溯算法N 皇后 */
func backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {
    // 当放置完所有行时,记录解
    if row == n {
        newState := make([][]string, len(*state))
        for i, _ := range newState {
            newState[i] = make([]string, len((*state)[0]))
            copy(newState[i], (*state)[i])

        }
        *res = append(*res, newState)
    }
    // 遍历所有列
    for col := 0; col < n; col++ {
        // 计算该格子对应的主对角线和副对角线
        diag1 := row - col + n - 1
        diag2 := row + col
        // 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后
        if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {
            // 尝试:将皇后放置在该格子
            (*state)[row][col] = "Q"
            (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true
            // 放置下一行
            backtrack(row+1, n, state, res, cols, diags1, diags2)
            // 回退:将该格子恢复为空位
            (*state)[row][col] = "#"
            (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false
        }
    }
}

/* 回溯算法N 皇后 */
func backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {
    // 当放置完所有行时,记录解
    if row == n {
        newState := make([][]string, len(*state))
        for i, _ := range newState {
            newState[i] = make([]string, len((*state)[0]))
            copy(newState[i], (*state)[i])

        }
        *res = append(*res, newState)
    }
    // 遍历所有列
    for col := 0; col < n; col++ {
        // 计算该格子对应的主对角线和副对角线
        diag1 := row - col + n - 1
        diag2 := row + col
        // 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后
        if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {
            // 尝试:将皇后放置在该格子
            (*state)[row][col] = "Q"
            (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true
            // 放置下一行
            backtrack(row+1, n, state, res, cols, diags1, diags2)
            // 回退:将该格子恢复为空位
            (*state)[row][col] = "#"
            (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false
        }
    }
}

func nQueens(n int) [][][]string {
    // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
    state := make([][]string, n)
    for i := 0; i < n; i++ {
        row := make([]string, n)
        for i := 0; i < n; i++ {
            row[i] = "#"
        }
        state[i] = row
    }
    // 记录列是否有皇后
    cols := make([]bool, n)
    diags1 := make([]bool, 2*n-1)
    diags2 := make([]bool, 2*n-1)
    res := make([][][]string, 0)
    backtrack(0, n, &state, &res, &cols, &diags1, &diags2)
    return res
}
```

=== "JavaScript"

```javascript title="n_queens.js"
/* 回溯算法N 皇后 */
function backtrack(row, n, state, res, cols, diags1, diags2) {
    // 当放置完所有行时,记录解
    if (row === n) {
        res.push(state.map((row) => row.slice()));
        return;
    }
    // 遍历所有列
    for (let col = 0; col < n; col++) {
        // 计算该格子对应的主对角线和副对角线
        const diag1 = row - col + n - 1;
        const diag2 = row + col;
        // 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后
        if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
            // 尝试:将皇后放置在该格子
            state[row][col] = 'Q';
            cols[col] = diags1[diag1] = diags2[diag2] = true;
            // 放置下一行
            backtrack(row + 1, n, state, res, cols, diags1, diags2);
            // 回退:将该格子恢复为空位
            state[row][col] = '#';
            cols[col] = diags1[diag1] = diags2[diag2] = false;
        }
    }
}

/* 求解 N 皇后 */
function nQueens(n) {
    // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
    const state = Array.from({ length: n }, () => Array(n).fill('#'));
    const cols = Array(n).fill(false); // 记录列是否有皇后
    const diags1 = Array(2 * n - 1).fill(false); // 记录主对角线是否有皇后
    const diags2 = Array(2 * n - 1).fill(false); // 记录副对角线是否有皇后
    const res = [];

    backtrack(0, n, state, res, cols, diags1, diags2);
    return res;
}
```

=== "TypeScript"

```typescript title="n_queens.ts"
/* 回溯算法N 皇后 */
function backtrack(
    row: number,
    n: number,
    state: string[][],
    res: string[][][],
    cols: boolean[],
    diags1: boolean[],
    diags2: boolean[]
): void {
    // 当放置完所有行时,记录解
    if (row === n) {
        res.push(state.map((row) => row.slice()));
        return;
    }
    // 遍历所有列
    for (let col = 0; col < n; col++) {
        // 计算该格子对应的主对角线和副对角线
        const diag1 = row - col + n - 1;
        const diag2 = row + col;
        // 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后
        if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
            // 尝试:将皇后放置在该格子
            state[row][col] = 'Q';
            cols[col] = diags1[diag1] = diags2[diag2] = true;
            // 放置下一行
            backtrack(row + 1, n, state, res, cols, diags1, diags2);
            // 回退:将该格子恢复为空位
            state[row][col] = '#';
            cols[col] = diags1[diag1] = diags2[diag2] = false;
        }
    }
}

/* 求解 N 皇后 */
function nQueens(n: number): string[][][] {
    // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
    const state = Array.from({ length: n }, () => Array(n).fill('#'));
    const cols = Array(n).fill(false); // 记录列是否有皇后
    const diags1 = Array(2 * n - 1).fill(false); // 记录主对角线是否有皇后
    const diags2 = Array(2 * n - 1).fill(false); // 记录副对角线是否有皇后
    const res: string[][][] = [];

    backtrack(0, n, state, res, cols, diags1, diags2);
    return res;
}
```

=== "C"

```c title="n_queens.c"
[class]{}-[func]{backtrack}

[class]{}-[func]{nQueens}
```

=== "C#"

```csharp title="n_queens.cs"
/* 回溯算法N 皇后 */
void backtrack(int row, int n, List<List<string>> state, List<List<List<string>>> res,
        bool[] cols, bool[] diags1, bool[] diags2) {
    // 当放置完所有行时,记录解
    if (row == n) {
        List<List<string>> copyState = new List<List<string>>();
        foreach (List<string> sRow in state) {
            copyState.Add(new List<string>(sRow));
        }
        res.Add(copyState);
        return;
    }
    // 遍历所有列
    for (int col = 0; col < n; col++) {
        // 计算该格子对应的主对角线和副对角线
        int diag1 = row - col + n - 1;
        int diag2 = row + col;
        // 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后
        if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
            // 尝试:将皇后放置在该格子
            state[row][col] = "Q";
            cols[col] = diags1[diag1] = diags2[diag2] = true;
            // 放置下一行
            backtrack(row + 1, n, state, res, cols, diags1, diags2);
            // 回退:将该格子恢复为空位
            state[row][col] = "#";
            cols[col] = diags1[diag1] = diags2[diag2] = false;
        }
    }
}

/* 求解 N 皇后 */
List<List<List<string>>> nQueens(int n) {
    // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
    List<List<string>> state = new List<List<string>>();
    for (int i = 0; i < n; i++) {
        List<string> row = new List<string>();
        for (int j = 0; j < n; j++) {
            row.Add("#");
        }
        state.Add(row);
    }
    bool[] cols = new bool[n]; // 记录列是否有皇后
    bool[] diags1 = new bool[2 * n - 1]; // 记录主对角线是否有皇后
    bool[] diags2 = new bool[2 * n - 1]; // 记录副对角线是否有皇后
    List<List<List<string>>> res = new List<List<List<string>>>();

    backtrack(0, n, state, res, cols, diags1, diags2);

    return res;
}
```

=== "Swift"

```swift title="n_queens.swift"
/* 回溯算法N 皇后 */
func backtrack(row: Int, n: Int, state: inout [[String]], res: inout [[[String]]], cols: inout [Bool], diags1: inout [Bool], diags2: inout [Bool]) {
    // 当放置完所有行时,记录解
    if row == n {
        res.append(state)
        return
    }
    // 遍历所有列
    for col in 0 ..< n {
        // 计算该格子对应的主对角线和副对角线
        let diag1 = row - col + n - 1
        let diag2 = row + col
        // 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后
        if !cols[col] && !diags1[diag1] && !diags2[diag2] {
            // 尝试:将皇后放置在该格子
            state[row][col] = "Q"
            cols[col] = true
            diags1[diag1] = true
            diags2[diag2] = true
            // 放置下一行
            backtrack(row: row + 1, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)
            // 回退:将该格子恢复为空位
            state[row][col] = "#"
            cols[col] = false
            diags1[diag1] = false
            diags2[diag2] = false
        }
    }
}

/* 求解 N 皇后 */
func nQueens(n: Int) -> [[[String]]] {
    // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
    var state = Array(repeating: Array(repeating: "#", count: n), count: n)
    var cols = Array(repeating: false, count: n) // 记录列是否有皇后
    var diags1 = Array(repeating: false, count: 2 * n - 1) // 记录主对角线是否有皇后
    var diags2 = Array(repeating: false, count: 2 * n - 1) // 记录副对角线是否有皇后
    var res: [[[String]]] = []

    backtrack(row: 0, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)

    return res
}
```

=== "Zig"

```zig title="n_queens.zig"
[class]{}-[func]{backtrack}

[class]{}-[func]{nQueens}
```

=== "Dart"

```dart title="n_queens.dart"
[class]{}-[func]{backtrack}

[class]{}-[func]{nQueens}
```

复杂度分析

逐行放置 n 次,考虑列约束,则从第一行到最后一行分别有 n, n-1, \cdots, 2, 1 个选择,因此时间复杂度为 $O(n!)$ 。实际上,根据对角线约束的剪枝也能够大幅地缩小搜索空间,因而搜索效率往往优于以上时间复杂度。

state 使用 O(n^2) 空间,cols , diags1 , diags2 皆使用 O(n) 空间。最大递归深度为 n ,使用 O(n) 栈帧空间。因此,空间复杂度为 $O(n^2)$