hello-algo/chapter_sorting/quick_sort.md
2023-02-26 19:53:26 +08:00

37 KiB
Executable file
Raw Blame History

comments
true

11.4.   快速排序

「快速排序 Quick Sort」是一种基于“分治思想”的排序算法速度很快、应用很广。

快速排序的核心操作为「哨兵划分」,其目标为:选取数组某个元素为 基准数,将所有小于基准数的元素移动至其左边,大于基准数的元素移动至其右边。「哨兵划分」的实现流程为:

  1. 以数组最左端元素作为基准数,初始化两个指针 i , j 指向数组两端;
  2. 设置一个循环,每轮中使用 i / j 分别寻找首个比基准数大 / 小的元素,并交换此两元素;
  3. 不断循环步骤 2. ,直至 i , j 相遇时跳出,最终把基准数交换至两个子数组的分界线;

「哨兵划分」执行完毕后,原数组被划分成两个部分,即 左子数组右子数组,且满足 左子数组任意元素 < 基准数 < 右子数组任意元素。因此,接下来我们只需要排序两个子数组即可。

=== "<1>" 哨兵划分步骤

=== "<2>" pivot_division_step2

=== "<3>" pivot_division_step3

=== "<4>" pivot_division_step4

=== "<5>" pivot_division_step5

=== "<6>" pivot_division_step6

=== "<7>" pivot_division_step7

=== "<8>" pivot_division_step8

=== "<9>" pivot_division_step9

=== "Java"

```java title="quick_sort.java"
/* 元素交换 */
void swap(int[] nums, int i, int j) {
    int tmp = nums[i];
    nums[i] = nums[j];
    nums[j] = tmp;
}

/* 哨兵划分 */
int partition(int[] nums, int left, int right) {
    // 以 nums[left] 作为基准数
    int i = left, j = right;
    while (i < j) {
        while (i < j && nums[j] >= nums[left])
            j--;          // 从右向左找首个小于基准数的元素
        while (i < j && nums[i] <= nums[left])
            i++;          // 从左向右找首个大于基准数的元素
        swap(nums, i, j); // 交换这两个元素
    }
    swap(nums, i, left);  // 将基准数交换至两子数组的分界线
    return i;             // 返回基准数的索引
}
```

=== "C++"

```cpp title="quick_sort.cpp"
/* 元素交换 */
void swap(vector<int>& nums, int i, int j) {
    int tmp = nums[i];
    nums[i] = nums[j];
    nums[j] = tmp;
}

/* 哨兵划分 */
int partition(vector<int>& nums, int left, int right) {
    // 以 nums[left] 作为基准数
    int i = left, j = right;
    while (i < j) {
        while (i < j && nums[j] >= nums[left])
            j--;          // 从右向左找首个小于基准数的元素
        while (i < j && nums[i] <= nums[left])
            i++;          // 从左向右找首个大于基准数的元素
        swap(nums, i, j); // 交换这两个元素
    }
    swap(nums, i, left);  // 将基准数交换至两子数组的分界线
    return i;             // 返回基准数的索引
}
```

=== "Python"

```python title="quick_sort.py"
""" 哨兵划分 """
def partition(self, nums, left, right):
    # 以 nums[left] 作为基准数
    i, j = left, right
    while i < j:
        while i < j and nums[j] >= nums[left]:
            j -= 1  # 从右向左找首个小于基准数的元素
        while i < j and nums[i] <= nums[left]:
            i += 1  # 从左向右找首个大于基准数的元素
        # 元素交换
        nums[i], nums[j] = nums[j], nums[i]
    # 将基准数交换至两子数组的分界线
    nums[i], nums[left] = nums[left], nums[i]
    return i  # 返回基准数的索引
```

=== "Go"

```go title="quick_sort.go"
/* 哨兵划分 */
func (q *quickSort) partition(nums []int, left, right int) int {
    // 以 nums[left] 作为基准数
    i, j := left, right
    for i < j {
        for i < j && nums[j] >= nums[left] {
            j-- // 从右向左找首个小于基准数的元素
        }
        for i < j && nums[i] <= nums[left] {
            i++ // 从左向右找首个大于基准数的元素
        }
        // 元素交换
        nums[i], nums[j] = nums[j], nums[i]
    }
    // 将基准数交换至两子数组的分界线
    nums[i], nums[left] = nums[left], nums[i]
    return i // 返回基准数的索引
}
```

=== "JavaScript"

```javascript title="quick_sort.js"
/* 元素交换 */
swap(nums, i, j) {
    let tmp = nums[i];
    nums[i] = nums[j];
    nums[j] = tmp;
}

/* 哨兵划分 */
partition(nums, left, right) {
    // 以 nums[left] 作为基准数
    let i = left, j = right;
    while (i < j) {
        while (i < j && nums[j] >= nums[left]) {
            j -= 1; // 从右向左找首个小于基准数的元素
        }
        while (i < j && nums[i] <= nums[left]) {
            i += 1; // 从左向右找首个大于基准数的元素
        }
        // 元素交换
        this.swap(nums, i, j); // 交换这两个元素
    }
    this.swap(nums, i, left); // 将基准数交换至两子数组的分界线
    return i; // 返回基准数的索引
}
```

=== "TypeScript"

```typescript title="quick_sort.ts"
/* 元素交换 */
swap(nums: number[], i: number, j: number): void {
    let tmp = nums[i];
    nums[i] = nums[j];
    nums[j] = tmp;
}

/* 哨兵划分 */
partition(nums: number[], left: number, right: number): number {
    // 以 nums[left] 作为基准数
    let i = left, j = right;
    while (i < j) {
        while (i < j && nums[j] >= nums[left]) {
            j -= 1; // 从右向左找首个小于基准数的元素
        }
        while (i < j && nums[i] <= nums[left]) {
            i += 1; // 从左向右找首个大于基准数的元素
        }
        // 元素交换
        this.swap(nums, i, j); // 交换这两个元素
    }
    this.swap(nums, i, left); // 将基准数交换至两子数组的分界线
    return i; // 返回基准数的索引
}
```

=== "C"

```c title="quick_sort.c"
[class]{quickSort}-[func]{partition}
```

=== "C#"

```csharp title="quick_sort.cs"
/* 元素交换 */
void swap(int[] nums, int i, int j)
{
    int tmp = nums[i];
    nums[i] = nums[j];
    nums[j] = tmp;
}

/* 哨兵划分 */
int partition(int[] nums, int left, int right)
{
    // 以 nums[left] 作为基准数
    int i = left, j = right;
    while (i < j)
    {
        while (i < j && nums[j] >= nums[left])
            j--;          // 从右向左找首个小于基准数的元素
        while (i < j && nums[i] <= nums[left])
            i++;          // 从左向右找首个大于基准数的元素
        swap(nums, i, j); // 交换这两个元素
    }
    swap(nums, i, left);  // 将基准数交换至两子数组的分界线
    return i;             // 返回基准数的索引
}
```

=== "Swift"

```swift title="quick_sort.swift"
/* 元素交换 */
func swap(nums: inout [Int], i: Int, j: Int) {
    let tmp = nums[i]
    nums[i] = nums[j]
    nums[j] = tmp
}

/* 哨兵划分 */
func partition(nums: inout [Int], left: Int, right: Int) -> Int {
    // 以 nums[left] 作为基准数
    var i = left
    var j = right
    while i < j {
        while i < j, nums[j] >= nums[left] {
            j -= 1 // 从右向左找首个小于基准数的元素
        }
        while i < j, nums[i] <= nums[left] {
            i += 1 // 从左向右找首个大于基准数的元素
        }
        swap(nums: &nums, i: i, j: j) // 交换这两个元素
    }
    swap(nums: &nums, i: i, j: left) // 将基准数交换至两子数组的分界线
    return i // 返回基准数的索引
}
```

=== "Zig"

```zig title="quick_sort.zig"
// 元素交换
fn swap(nums: []i32, i: usize, j: usize) void {
    var tmp = nums[i];
    nums[i] = nums[j];
    nums[j] = tmp;
}

// 哨兵划分
fn partition(nums: []i32, left: usize, right: usize) usize {
    // 以 nums[left] 作为基准数
    var i = left;
    var j = right;
    while (i < j) {
        while (i < j and nums[j] >= nums[left]) j -= 1; // 从右向左找首个小于基准数的元素
        while (i < j and nums[i] <= nums[left]) i += 1; // 从左向右找首个大于基准数的元素
        swap(nums, i, j);   // 交换这两个元素
    }
    swap(nums, i, left);    // 将基准数交换至两子数组的分界线
    return i;               // 返回基准数的索引
}
```

!!! note "快速排序的分治思想"

哨兵划分的实质是将 **一个长数组的排序问题** 简化为 **两个短数组的排序问题**。

11.4.1.   算法流程

  1. 首先,对数组执行一次「哨兵划分」,得到待排序的 左子数组右子数组
  2. 接下来,对 左子数组右子数组 分别 递归执行「哨兵划分」……
  3. 直至子数组长度为 1 时 终止递归,即可完成对整个数组的排序;

观察发现,快速排序和「二分查找」的原理类似,都是以对数阶的时间复杂度来缩小处理区间。

快速排序流程

Fig. 快速排序流程

=== "Java"

```java title="quick_sort.java"
/* 快速排序 */
void quickSort(int[] nums, int left, int right) {
    // 子数组长度为 1 时终止递归
    if (left >= right)
        return;
    // 哨兵划分
    int pivot = partition(nums, left, right);
    // 递归左子数组、右子数组
    quickSort(nums, left, pivot - 1);
    quickSort(nums, pivot + 1, right);
}
```

=== "C++"

```cpp title="quick_sort.cpp"
/* 快速排序 */
void quickSort(vector<int>& nums, int left, int right) {
    // 子数组长度为 1 时终止递归
    if (left >= right)
        return;
    // 哨兵划分
    int pivot = partition(nums, left, right);
    // 递归左子数组、右子数组
    quickSort(nums, left, pivot - 1);
    quickSort(nums, pivot + 1, right);
}
```

=== "Python"

```python title="quick_sort.py"
""" 快速排序 """
def quick_sort(self, nums, left, right):
    # 子数组长度为 1 时终止递归
    if left >= right:
        return
    # 哨兵划分
    pivot = self.partition(nums, left, right)
    # 递归左子数组、右子数组
    self.quick_sort(nums, left, pivot - 1)
    self.quick_sort(nums, pivot + 1, right)
```

=== "Go"

```go title="quick_sort.go"
/* 快速排序 */
func (q *quickSort) quickSort(nums []int, left, right int) {
    // 子数组长度为 1 时终止递归
    if left >= right {
        return
    }
    // 哨兵划分
    pivot := q.partition(nums, left, right)
    // 递归左子数组、右子数组
    q.quickSort(nums, left, pivot-1)
    q.quickSort(nums, pivot+1, right)
}
```

=== "JavaScript"

```javascript title="quick_sort.js"
/* 快速排序 */
quickSort(nums, left, right) {
    // 子数组长度为 1 时终止递归
    if (left >= right) return;
    // 哨兵划分
    const pivot = this.partition(nums, left, right);
    // 递归左子数组、右子数组
    this.quickSort(nums, left, pivot - 1);
    this.quickSort(nums, pivot + 1, right);
}
```

=== "TypeScript"

```typescript title="quick_sort.ts"
/* 快速排序 */
quickSort(nums: number[], left: number, right: number): void {
    // 子数组长度为 1 时终止递归
    if (left >= right) {
        return;
    }
    // 哨兵划分
    const pivot = this.partition(nums, left, right);
    // 递归左子数组、右子数组
    this.quickSort(nums, left, pivot - 1);
    this.quickSort(nums, pivot + 1, right);
}
```

=== "C"

```c title="quick_sort.c"
[class]{quickSort}-[func]{quickSort}
```

=== "C#"

```csharp title="quick_sort.cs"
/* 快速排序 */
void quickSort(int[] nums, int left, int right)
{
    // 子数组长度为 1 时终止递归
    if (left >= right)
        return;
    // 哨兵划分
    int pivot = partition(nums, left, right);
    // 递归左子数组、右子数组
    quickSort(nums, left, pivot - 1);
    quickSort(nums, pivot + 1, right);
}
```

=== "Swift"

```swift title="quick_sort.swift"
/* 快速排序 */
func quickSort(nums: inout [Int], left: Int, right: Int) {
    // 子数组长度为 1 时终止递归
    if left >= right {
        return
    }
    // 哨兵划分
    let pivot = partition(nums: &nums, left: left, right: right)
    // 递归左子数组、右子数组
    quickSort(nums: &nums, left: left, right: pivot - 1)
    quickSort(nums: &nums, left: pivot + 1, right: right)
}
```

=== "Zig"

```zig title="quick_sort.zig"
// 快速排序
fn quickSort(nums: []i32, left: usize, right: usize) void {
    // 子数组长度为 1 时终止递归
    if (left >= right) return;
    // 哨兵划分
    var pivot = partition(nums, left, right);
    // 递归左子数组、右子数组
    quickSort(nums, left, pivot - 1);
    quickSort(nums, pivot + 1, right);
}
```

11.4.2.   算法特性

平均时间复杂度 $O(n \log n)$ :平均情况下,哨兵划分的递归层数为 \log n ,每层中的总循环数为 n ,总体使用 O(n \log n) 时间。

最差时间复杂度 $O(n^2)$ :最差情况下,哨兵划分操作将长度为 n 的数组划分为长度为 0n - 1 的两个子数组,此时递归层数达到 n 层,每层中的循环数为 n ,总体使用 O(n^2) 时间。

空间复杂度 $O(n)$ :输入数组完全倒序下,达到最差递归深度 n

原地排序:只在递归中使用 O(\log n) 大小的栈帧空间。

非稳定排序:哨兵划分操作可能改变相等元素的相对位置。

自适应排序:最差情况下,时间复杂度劣化至 O(n^2)

11.4.3.   快排为什么快?

从命名能够看出,快速排序在效率方面一定“有两把刷子”。快速排序的平均时间复杂度虽然与「归并排序」和「堆排序」一致,但实际 效率更高,这是因为:

  • 出现最差情况的概率很低:虽然快速排序的最差时间复杂度为 O(n^2) ,不如归并排序,但绝大部分情况下,快速排序可以达到 O(n \log n) 的复杂度。
  • 缓存使用效率高:哨兵划分操作时,将整个子数组加载入缓存中,访问元素效率很高。而诸如「堆排序」需要跳跃式访问元素,因此不具有此特性。
  • 复杂度的常数系数低:在提及的三种算法中,快速排序的 比较赋值交换 三种操作的总体数量最少(类似于「插入排序」快于「冒泡排序」的原因)。

11.4.4.   基准数优化

普通快速排序在某些输入下的时间效率变差。举个极端例子,假设输入数组是完全倒序的,由于我们选取最左端元素为基准数,那么在哨兵划分完成后,基准数被交换至数组最右端,从而 左子数组长度为 $n - 1$、右子数组长度为 $0$ 。这样进一步递归下去,每轮哨兵划分后的右子数组长度都为 $0$ ,分治策略失效,快速排序退化为「冒泡排序」了。

为了尽量避免这种情况发生,我们可以优化一下基准数的选取策略。首先,在哨兵划分中,我们可以 随机选取一个元素作为基准数。但如果运气很差,每次都选择到比较差的基准数,那么效率依然不好。

进一步地,我们可以在数组中选取 3 个候选元素(一般为数组的首、尾、中点元素),并将三个候选元素的中位数作为基准数,这样基准数“既不大也不小”的概率就大大提升了。当然,如果数组很长的话,我们也可以选取更多候选元素,来进一步提升算法的稳健性。采取该方法后,时间复杂度劣化至 O(n^2) 的概率极低。

=== "Java"

```java title="quick_sort.java"
/* 选取三个元素的中位数 */
int medianThree(int[] nums, int left, int mid, int right) {
    // 此处使用异或运算来简化代码
    // 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
    if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))
        return left;
    else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))
        return mid;
    else
        return right;
}

/* 哨兵划分(三数取中值) */
int partition(int[] nums, int left, int right) {
    // 选取三个候选元素的中位数
    int med = medianThree(nums, left, (left + right) / 2, right);
    // 将中位数交换至数组最左端
    swap(nums, left, med);
    // 以 nums[left] 作为基准数
    int i = left, j = right;
    while (i < j) {
        while (i < j && nums[j] >= nums[left])
            j--;          // 从右向左找首个小于基准数的元素
        while (i < j && nums[i] <= nums[left])
            i++;          // 从左向右找首个大于基准数的元素
        swap(nums, i, j); // 交换这两个元素
    }
    swap(nums, i, left);  // 将基准数交换至两子数组的分界线
    return i;             // 返回基准数的索引
}
```

=== "C++"

```cpp title="quick_sort.cpp"
/* 选取三个元素的中位数 */
int medianThree(vector<int>& nums, int left, int mid, int right) {
    // 此处使用异或运算来简化代码
    // 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
    if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))
        return left;
    else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))
        return mid;
    else
        return right;
}

/* 哨兵划分(三数取中值) */
int partition(vector<int>& nums, int left, int right) {
    // 选取三个候选元素的中位数
    int med = medianThree(nums, left, (left + right) / 2, right);
    // 将中位数交换至数组最左端
    swap(nums, left, med);
    // 以 nums[left] 作为基准数
    int i = left, j = right;
    while (i < j) {
        while (i < j && nums[j] >= nums[left])
            j--;          // 从右向左找首个小于基准数的元素
        while (i < j && nums[i] <= nums[left])
            i++;          // 从左向右找首个大于基准数的元素
        swap(nums, i, j); // 交换这两个元素
    }
    swap(nums, i, left);  // 将基准数交换至两子数组的分界线
    return i;             // 返回基准数的索引
}
```

=== "Python"

```python title="quick_sort.py"
""" 选取三个元素的中位数 """
def median_three(self, nums, left, mid, right):
    # 此处使用异或运算来简化代码
    # 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
    if (nums[left] < nums[mid]) ^ (nums[left] < nums[right]):
        return left
    elif (nums[mid] < nums[left]) ^ (nums[mid] < nums[right]):
        return mid
    return right

""" 哨兵划分(三数取中值) """
def partition(self, nums, left, right):
    # 以 nums[left] 作为基准数
    med = self.median_three(nums, left, (left + right) // 2, right)
    # 将中位数交换至数组最左端
    nums[left], nums[med] = nums[med], nums[left]
    # 以 nums[left] 作为基准数
    i, j = left, right
    while i < j:
        while i < j and nums[j] >= nums[left]:
            j -= 1  # 从右向左找首个小于基准数的元素
        while i < j and nums[i] <= nums[left]:
            i += 1  # 从左向右找首个大于基准数的元素
        # 元素交换
        nums[i], nums[j] = nums[j], nums[i]
    # 将基准数交换至两子数组的分界线
    nums[i], nums[left] = nums[left], nums[i]
    return i  # 返回基准数的索引
```

=== "Go"

```go title="quick_sort.go"
/* 选取三个元素的中位数 */
func (q *quickSortMedian) medianThree(nums []int, left, mid, right int) int {
    // 此处使用异或运算来简化代码(!= 在这里起到异或的作用)
    // 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
    if (nums[left] < nums[mid]) != (nums[left] < nums[right]) {
        return left
    } else if (nums[mid] < nums[left]) != (nums[mid] < nums[right]) {
        return mid
    }
    return right
}

/* 哨兵划分(三数取中值)*/
func (q *quickSortMedian) partition(nums []int, left, right int) int {
    // 以 nums[left] 作为基准数
    med := q.medianThree(nums, left, (left+right)/2, right)
    // 将中位数交换至数组最左端
    nums[left], nums[med] = nums[med], nums[left]
    // 以 nums[left] 作为基准数
    i, j := left, right
    for i < j {
        for i < j && nums[j] >= nums[left] {
            j-- //从右向左找首个小于基准数的元素
        }
        for i < j && nums[i] <= nums[left] {
            i++ //从左向右找首个大于基准数的元素
        }
        //元素交换
        nums[i], nums[j] = nums[j], nums[i]
    }
    //将基准数交换至两子数组的分界线
    nums[i], nums[left] = nums[left], nums[i]
    return i //返回基准数的索引
}
```

=== "JavaScript"

```javascript title="quick_sort.js"
/* 选取三个元素的中位数 */
medianThree(nums, left, mid, right) {
    // 此处使用异或运算来简化代码
    // 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
    if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right])) return left;
    else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right])) return mid;
    else return right;
}

/* 哨兵划分(三数取中值) */
partition(nums, left, right) {
    // 选取三个候选元素的中位数
    let med = this.medianThree(nums, left, Math.floor((left + right) / 2), right);
    // 将中位数交换至数组最左端
    this.swap(nums, left, med);
    // 以 nums[left] 作为基准数
    let i = left, j = right;
    while (i < j) {
        while (i < j && nums[j] >= nums[left]) j--; // 从右向左找首个小于基准数的元素
        while (i < j && nums[i] <= nums[left]) i++; // 从左向右找首个大于基准数的元素
        this.swap(nums, i, j); // 交换这两个元素
    }
    this.swap(nums, i, left); // 将基准数交换至两子数组的分界线
    return i; // 返回基准数的索引
}
```

=== "TypeScript"

```typescript title="quick_sort.ts"
/* 选取三个元素的中位数 */
medianThree(nums: number[], left: number, mid: number, right: number): number {
    // 此处使用异或运算来简化代码
    // 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
    if (Number(nums[left] < nums[mid]) ^ Number(nums[left] < nums[right])) {
        return left;
    } else if (Number(nums[mid] < nums[left]) ^ Number(nums[mid] < nums[right])) {
        return mid;
    } else {
        return right;
    }
}

/* 哨兵划分(三数取中值) */
partition(nums: number[], left: number, right: number): number {
    // 选取三个候选元素的中位数
    let med = this.medianThree(nums, left, Math.floor((left + right) / 2), right);
    // 将中位数交换至数组最左端
    this.swap(nums, left, med);
    // 以 nums[left] 作为基准数
    let i = left, j = right;
    while (i < j) {
        while (i < j && nums[j] >= nums[left]) {
            j--; // 从右向左找首个小于基准数的元素
        }
        while (i < j && nums[i] <= nums[left]) {
            i++; // 从左向右找首个大于基准数的元素
        }
        this.swap(nums, i, j); // 交换这两个元素
    }
    this.swap(nums, i, left); // 将基准数交换至两子数组的分界线
    return i; // 返回基准数的索引
}
```

=== "C"

```c title="quick_sort.c"
[class]{quickSortMedian}-[func]{medianThree}

[class]{quickSortMedian}-[func]{partition}
```

=== "C#"

```csharp title="quick_sort.cs"
/* 选取三个元素的中位数 */
int medianThree(int[] nums, int left, int mid, int right)
{
    // 此处使用异或运算来简化代码
    // 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
    if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))
        return left;
    else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))
        return mid;
    else
        return right;
}

/* 哨兵划分(三数取中值) */
int partition(int[] nums, int left, int right)
{
    // 选取三个候选元素的中位数
    int med = medianThree(nums, left, (left + right) / 2, right);
    // 将中位数交换至数组最左端
    swap(nums, left, med);
    // 以 nums[left] 作为基准数
    int i = left, j = right;
    while (i < j)
    {
        while (i < j && nums[j] >= nums[left])
            j--;          // 从右向左找首个小于基准数的元素
        while (i < j && nums[i] <= nums[left])
            i++;          // 从左向右找首个大于基准数的元素
        swap(nums, i, j); // 交换这两个元素
    }
    swap(nums, i, left);  // 将基准数交换至两子数组的分界线
    return i;             // 返回基准数的索引
}
```

=== "Swift"

```swift title="quick_sort.swift"
/* 选取三个元素的中位数 */
func medianThree(nums: [Int], left: Int, mid: Int, right: Int) -> Int {
    if (nums[left] < nums[mid]) != (nums[left] < nums[right]) {
        return left
    } else if (nums[mid] < nums[left]) != (nums[mid] < nums[right]) {
        return mid
    } else {
        return right
    }
}

/* 哨兵划分(三数取中值) */
func partitionMedian(nums: inout [Int], left: Int, right: Int) -> Int {
    // 选取三个候选元素的中位数
    let med = medianThree(nums: nums, left: left, mid: (left + right) / 2, right: right)
    // 将中位数交换至数组最左端
    swap(nums: &nums, i: left, j: med)
    return partition(nums: &nums, left: left, right: right)
}
```

=== "Zig"

```zig title="quick_sort.zig"
// 选取三个元素的中位数
fn medianThree(nums: []i32, left: usize, mid: usize, right: usize) usize {
    // 此处使用异或运算来简化代码
    // 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
    if ((nums[left] < nums[mid]) != (nums[left] < nums[right])) {
        return left;
    } else if ((nums[mid] < nums[left]) != (nums[mid] < nums[right])) {
        return mid;
    } else {
        return right;
    }
}

// 哨兵划分(三数取中值)
fn partition(nums: []i32, left: usize, right: usize) usize {
    // 选取三个候选元素的中位数
    var med = medianThree(nums, left, (left + right) / 2, right);
    // 将中位数交换至数组最左端
    swap(nums, left, med);
    // 以 nums[left] 作为基准数
    var i = left;
    var j = right;
    while (i < j) {
        while (i < j and nums[j] >= nums[left]) j -= 1; // 从右向左找首个小于基准数的元素
        while (i < j and nums[i] <= nums[left]) i += 1; // 从左向右找首个大于基准数的元素
        swap(nums, i, j);   // 交换这两个元素
    }
    swap(nums, i, left);    // 将基准数交换至两子数组的分界线
    return i;               // 返回基准数的索引
}
```

11.4.5.   尾递归优化

普通快速排序在某些输入下的空间效率变差。仍然以完全倒序的输入数组为例,由于每轮哨兵划分后右子数组长度为 0 ,那么将形成一个高度为 n - 1 的递归树,此时使用的栈帧空间大小劣化至 O(n)

为了避免栈帧空间的累积,我们可以在每轮哨兵排序完成后,判断两个子数组的长度大小,仅递归排序较短的子数组。由于较短的子数组长度不会超过 \frac{n}{2} ,因此这样做能保证递归深度不超过 \log n ,即最差空间复杂度被优化至 O(\log n)

=== "Java"

```java title="quick_sort.java"
/* 快速排序(尾递归优化) */
void quickSort(int[] nums, int left, int right) {
    // 子数组长度为 1 时终止
    while (left < right) {
        // 哨兵划分操作
        int pivot = partition(nums, left, right);
        // 对两个子数组中较短的那个执行快排
        if (pivot - left < right - pivot) {
            quickSort(nums, left, pivot - 1);  // 递归排序左子数组
            left = pivot + 1;  // 剩余待排序区间为 [pivot + 1, right]
        } else {
            quickSort(nums, pivot + 1, right); // 递归排序右子数组
            right = pivot - 1; // 剩余待排序区间为 [left, pivot - 1]
        }
    }
}
```

=== "C++"

```cpp title="quick_sort.cpp"
/* 快速排序(尾递归优化) */
void quickSort(vector<int>& nums, int left, int right) {
    // 子数组长度为 1 时终止
    while (left < right) {
        // 哨兵划分操作
        int pivot = partition(nums, left, right);
        // 对两个子数组中较短的那个执行快排
        if (pivot - left < right - pivot) {
            quickSort(nums, left, pivot - 1);  // 递归排序左子数组
            left = pivot + 1;  // 剩余待排序区间为 [pivot + 1, right]
        } else {
            quickSort(nums, pivot + 1, right); // 递归排序右子数组
            right = pivot - 1; // 剩余待排序区间为 [left, pivot - 1]
        }
    }
}
```

=== "Python"

```python title="quick_sort.py"
""" 快速排序(尾递归优化) """
def quick_sort(self, nums, left, right):
    # 子数组长度为 1 时终止
    while left < right:
        # 哨兵划分操作
        pivot = self.partition(nums, left, right)
        # 对两个子数组中较短的那个执行快排
        if pivot - left < right - pivot:
            self.quick_sort(nums, left, pivot - 1)  # 递归排序左子数组
            left = pivot + 1     # 剩余待排序区间为 [pivot + 1, right]
        else:
            self.quick_sort(nums, pivot + 1, right)  # 递归排序右子数组
            right = pivot - 1    # 剩余待排序区间为 [left, pivot - 1]
```

=== "Go"

```go title="quick_sort.go"
/* 快速排序(尾递归优化)*/
func (q *quickSortTailCall) quickSort(nums []int, left, right int) {
    // 子数组长度为 1 时终止
    for left < right {
        // 哨兵划分操作
        pivot := q.partition(nums, left, right)
        // 对两个子数组中较短的那个执行快排
        if pivot-left < right-pivot {
            q.quickSort(nums, left, pivot-1) // 递归排序左子数组
            left = pivot + 1                 // 剩余待排序区间为 [pivot + 1, right]
        } else {
            q.quickSort(nums, pivot+1, right) // 递归排序右子数组
            right = pivot - 1                 // 剩余待排序区间为 [left, pivot - 1]
        }
    }
}
```

=== "JavaScript"

```javascript title="quick_sort.js"
/* 快速排序(尾递归优化) */
quickSort(nums, left, right) {
    // 子数组长度为 1 时终止
    while (left < right) {
        // 哨兵划分操作
        let pivot = this.partition(nums, left, right);
        // 对两个子数组中较短的那个执行快排
        if (pivot - left < right - pivot) {
            this.quickSort(nums, left, pivot - 1); // 递归排序左子数组
            left = pivot + 1; // 剩余待排序区间为 [pivot + 1, right]
        } else {
            this.quickSort(nums, pivot + 1, right); // 递归排序右子数组
            right = pivot - 1; // 剩余待排序区间为 [left, pivot - 1]
        }
    }
}
```

=== "TypeScript"

```typescript title="quick_sort.ts"
/* 快速排序(尾递归优化) */
quickSort(nums: number[], left: number, right: number): void {
    // 子数组长度为 1 时终止
    while (left < right) {
        // 哨兵划分操作
        let pivot = this.partition(nums, left, right);
        // 对两个子数组中较短的那个执行快排
        if (pivot - left < right - pivot) {
            this.quickSort(nums, left, pivot - 1); // 递归排序左子数组
            left = pivot + 1; // 剩余待排序区间为 [pivot + 1, right]
        } else {
            this.quickSort(nums, pivot + 1, right); // 递归排序右子数组
            right = pivot - 1; // 剩余待排序区间为 [left, pivot - 1]
        }
    }
}
```

=== "C"

```c title="quick_sort.c"
[class]{quickSortTailCall}-[func]{quickSort}
```

=== "C#"

```csharp title="quick_sort.cs"
/* 快速排序(尾递归优化) */
void quickSort(int[] nums, int left, int right)
{
    // 子数组长度为 1 时终止
    while (left < right)
    {
        // 哨兵划分操作
        int pivot = partition(nums, left, right);
        // 对两个子数组中较短的那个执行快排
        if (pivot - left < right - pivot)
        {
            quickSort(nums, left, pivot - 1);  // 递归排序左子数组
            left = pivot + 1;  // 剩余待排序区间为 [pivot + 1, right]
        }
        else
        {
            quickSort(nums, pivot + 1, right); // 递归排序右子数组
            right = pivot - 1; // 剩余待排序区间为 [left, pivot - 1]
        }
    }
}
```

=== "Swift"

```swift title="quick_sort.swift"
/* 快速排序(尾递归优化) */
func quickSortTailCall(nums: inout [Int], left: Int, right: Int) {
    var left = left
    var right = right
    // 子数组长度为 1 时终止
    while left < right {
        // 哨兵划分操作
        let pivot = partition(nums: &nums, left: left, right: right)
        // 对两个子数组中较短的那个执行快排
        if (pivot - left) < (right - pivot) {
            quickSortTailCall(nums: &nums, left: left, right: pivot - 1) // 递归排序左子数组
            left = pivot + 1 // 剩余待排序区间为 [pivot + 1, right]
        } else {
            quickSortTailCall(nums: &nums, left: pivot + 1, right: right) // 递归排序右子数组
            right = pivot - 1 // 剩余待排序区间为 [left, pivot - 1]
        }
    }
}
```

=== "Zig"

```zig title="quick_sort.zig"
// 快速排序(尾递归优化)
fn quickSort(nums: []i32, left_: usize, right_: usize) void {
    var left = left_;
    var right = right_;
    // 子数组长度为 1 时终止递归
    while (left < right) {
        // 哨兵划分操作
        var pivot = partition(nums, left, right);
        // 对两个子数组中较短的那个执行快排
        if (pivot - left < right - pivot) {
            quickSort(nums, left, pivot - 1);   // 递归排序左子数组
            left = pivot + 1;                   // 剩余待排序区间为 [pivot + 1, right]
        } else {
            quickSort(nums, pivot + 1, right);  // 递归排序右子数组
            right = pivot - 1;                  // 剩余待排序区间为 [left, pivot - 1]
        }
    }
}
```