hello-algo/docs/chapter_backtracking/n_queens_problem.md
2023-10-09 05:05:19 +08:00

676 lines
27 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
comments: true
---
# 13.4   N 皇后问题
!!! question
根据国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。给定 $n$ 个皇后和一个 $n \times n$ 大小的棋盘,寻找使得所有皇后之间无法相互攻击的摆放方案。
如图 13-15 所示,当 $n = 4$ 时,共可以找到两个解。从回溯算法的角度看,$n \times n$ 大小的棋盘共有 $n^2$ 个格子,给出了所有的选择 `choices` 。在逐个放置皇后的过程中,棋盘状态在不断地变化,每个时刻的棋盘就是状态 `state`
![4 皇后问题的解](n_queens_problem.assets/solution_4_queens.png)
<p align="center"> 图 13-15 &nbsp; 4 皇后问题的解 </p>
图 13-16 展示了本题的三个约束条件:**多个皇后不能在同一行、同一列、同一对角线**。值得注意的是,对角线分为主对角线 `\` 和次对角线 `/` 两种。
![n 皇后问题的约束条件](n_queens_problem.assets/n_queens_constraints.png)
<p align="center"> 图 13-16 &nbsp; n 皇后问题的约束条件 </p>
### 1. &nbsp; 逐行放置策略
皇后的数量和棋盘的行数都为 $n$ ,因此我们容易得到一个推论:**棋盘每行都允许且只允许放置一个皇后**。
也就是说,我们可以采取逐行放置策略:从第一行开始,在每行放置一个皇后,直至最后一行结束。
如图 13-17 所示,为 $4$ 皇后问题的逐行放置过程。受画幅限制,图 13-17 仅展开了第一行的其中一个搜索分支,并且将不满足列约束和对角线约束的方案都进行了剪枝。
![逐行放置策略](n_queens_problem.assets/n_queens_placing.png)
<p align="center"> 图 13-17 &nbsp; 逐行放置策略 </p>
本质上看,**逐行放置策略起到了剪枝的作用**,它避免了同一行出现多个皇后的所有搜索分支。
### 2. &nbsp; 列与对角线剪枝
为了满足列约束,我们可以利用一个长度为 $n$ 的布尔型数组 `cols` 记录每一列是否有皇后。在每次决定放置前,我们通过 `cols` 将已有皇后的列进行剪枝,并在回溯中动态更新 `cols` 的状态。
那么,如何处理对角线约束呢?设棋盘中某个格子的行列索引为 $(row, col)$ ,选定矩阵中的某条主对角线,我们发现该对角线上所有格子的行索引减列索引都相等,**即对角线上所有格子的 $row - col$ 为恒定值**。
也就是说,如果两个格子满足 $row_1 - col_1 = row_2 - col_2$ ,则它们一定处在同一条主对角线上。利用该规律,我们可以借助图 13-18 所示的数组 `diag1` ,记录每条主对角线上是否有皇后。
同理,**次对角线上的所有格子的 $row + col$ 是恒定值**。我们同样也可以借助数组 `diag2` 来处理次对角线约束。
![处理列约束和对角线约束](n_queens_problem.assets/n_queens_cols_diagonals.png)
<p align="center"> 图 13-18 &nbsp; 处理列约束和对角线约束 </p>
### 3. &nbsp; 代码实现
请注意,$n$ 维方阵中 $row - col$ 的范围是 $[-n + 1, n - 1]$ $row + col$ 的范围是 $[0, 2n - 2]$ ,所以主对角线和次对角线的数量都为 $2n - 1$ ,即数组 `diag1``diag2` 的长度都为 $2n - 1$ 。
=== "Python"
```python title="n_queens.py"
def backtrack(
row: int,
n: int,
state: list[list[str]],
res: list[list[list[str]]],
cols: list[bool],
diags1: list[bool],
diags2: list[bool],
):
"""回溯算法N 皇后"""
# 当放置完所有行时,记录解
if row == n:
res.append([list(row) for row in state])
return
# 遍历所有列
for col in range(n):
# 计算该格子对应的主对角线和副对角线
diag1 = row - col + n - 1
diag2 = row + col
# 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后
if not cols[col] and not diags1[diag1] and not diags2[diag2]:
# 尝试:将皇后放置在该格子
state[row][col] = "Q"
cols[col] = diags1[diag1] = diags2[diag2] = True
# 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2)
# 回退:将该格子恢复为空位
state[row][col] = "#"
cols[col] = diags1[diag1] = diags2[diag2] = False
def n_queens(n: int) -> list[list[list[str]]]:
"""求解 N 皇后"""
# 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
state = [["#" for _ in range(n)] for _ in range(n)]
cols = [False] * n # 记录列是否有皇后
diags1 = [False] * (2 * n - 1) # 记录主对角线是否有皇后
diags2 = [False] * (2 * n - 1) # 记录副对角线是否有皇后
res = []
backtrack(0, n, state, res, cols, diags1, diags2)
return res
```
=== "C++"
```cpp title="n_queens.cpp"
/* 回溯算法N 皇后 */
void backtrack(int row, int n, vector<vector<string>> &state, vector<vector<vector<string>>> &res, vector<bool> &cols,
vector<bool> &diags1, vector<bool> &diags2) {
// 当放置完所有行时,记录解
if (row == n) {
res.push_back(state);
return;
}
// 遍历所有列
for (int col = 0; col < n; col++) {
// 计算该格子对应的主对角线和副对角线
int diag1 = row - col + n - 1;
int diag2 = row + col;
// 剪枝不允许该格子所在列主对角线副对角线存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 尝试将皇后放置在该格子
state[row][col] = "Q";
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退将该格子恢复为空位
state[row][col] = "#";
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 N 皇后 */
vector<vector<vector<string>>> nQueens(int n) {
// 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
vector<vector<string>> state(n, vector<string>(n, "#"));
vector<bool> cols(n, false); // 记录列是否有皇后
vector<bool> diags1(2 * n - 1, false); // 记录主对角线是否有皇后
vector<bool> diags2(2 * n - 1, false); // 记录副对角线是否有皇后
vector<vector<vector<string>>> res;
backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
```
=== "Java"
```java title="n_queens.java"
/* 回溯算法N 皇后 */
void backtrack(int row, int n, List<List<String>> state, List<List<List<String>>> res,
boolean[] cols, boolean[] diags1, boolean[] diags2) {
// 当放置完所有行时,记录解
if (row == n) {
List<List<String>> copyState = new ArrayList<>();
for (List<String> sRow : state) {
copyState.add(new ArrayList<>(sRow));
}
res.add(copyState);
return;
}
// 遍历所有列
for (int col = 0; col < n; col++) {
// 计算该格子对应的主对角线和副对角线
int diag1 = row - col + n - 1;
int diag2 = row + col;
// 剪枝不允许该格子所在列主对角线副对角线存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 尝试将皇后放置在该格子
state.get(row).set(col, "Q");
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退将该格子恢复为空位
state.get(row).set(col, "#");
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 N 皇后 */
List<List<List<String>>> nQueens(int n) {
// 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
List<List<String>> state = new ArrayList<>();
for (int i = 0; i < n; i++) {
List<String> row = new ArrayList<>();
for (int j = 0; j < n; j++) {
row.add("#");
}
state.add(row);
}
boolean[] cols = new boolean[n]; // 记录列是否有皇后
boolean[] diags1 = new boolean[2 * n - 1]; // 记录主对角线是否有皇后
boolean[] diags2 = new boolean[2 * n - 1]; // 记录副对角线是否有皇后
List<List<List<String>>> res = new ArrayList<>();
backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
```
=== "C#"
```csharp title="n_queens.cs"
/* 回溯算法N 皇后 */
void Backtrack(int row, int n, List<List<string>> state, List<List<List<string>>> res,
bool[] cols, bool[] diags1, bool[] diags2) {
// 当放置完所有行时,记录解
if (row == n) {
List<List<string>> copyState = new();
foreach (List<string> sRow in state) {
copyState.Add(new List<string>(sRow));
}
res.Add(copyState);
return;
}
// 遍历所有列
for (int col = 0; col < n; col++) {
// 计算该格子对应的主对角线和副对角线
int diag1 = row - col + n - 1;
int diag2 = row + col;
// 剪枝不允许该格子所在列主对角线副对角线存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 尝试将皇后放置在该格子
state[row][col] = "Q";
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
Backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退将该格子恢复为空位
state[row][col] = "#";
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 N 皇后 */
List<List<List<string>>> NQueens(int n) {
// 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
List<List<string>> state = new();
for (int i = 0; i < n; i++) {
List<string> row = new();
for (int j = 0; j < n; j++) {
row.Add("#");
}
state.Add(row);
}
bool[] cols = new bool[n]; // 记录列是否有皇后
bool[] diags1 = new bool[2 * n - 1]; // 记录主对角线是否有皇后
bool[] diags2 = new bool[2 * n - 1]; // 记录副对角线是否有皇后
List<List<List<string>>> res = new();
Backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
```
=== "Go"
```go title="n_queens.go"
/* 回溯算法N 皇后 */
func backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {
// 当放置完所有行时,记录解
if row == n {
newState := make([][]string, len(*state))
for i, _ := range newState {
newState[i] = make([]string, len((*state)[0]))
copy(newState[i], (*state)[i])
}
*res = append(*res, newState)
}
// 遍历所有列
for col := 0; col < n; col++ {
// 计算该格子对应的主对角线和副对角线
diag1 := row - col + n - 1
diag2 := row + col
// 剪枝不允许该格子所在列主对角线副对角线存在皇后
if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {
// 尝试将皇后放置在该格子
(*state)[row][col] = "Q"
(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true
// 放置下一行
backtrack(row+1, n, state, res, cols, diags1, diags2)
// 回退将该格子恢复为空位
(*state)[row][col] = "#"
(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false
}
}
}
/* 回溯算法N 皇后 */
func backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {
// 当放置完所有行时记录解
if row == n {
newState := make([][]string, len(*state))
for i, _ := range newState {
newState[i] = make([]string, len((*state)[0]))
copy(newState[i], (*state)[i])
}
*res = append(*res, newState)
}
// 遍历所有列
for col := 0; col < n; col++ {
// 计算该格子对应的主对角线和副对角线
diag1 := row - col + n - 1
diag2 := row + col
// 剪枝不允许该格子所在列主对角线副对角线存在皇后
if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {
// 尝试将皇后放置在该格子
(*state)[row][col] = "Q"
(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true
// 放置下一行
backtrack(row+1, n, state, res, cols, diags1, diags2)
// 回退将该格子恢复为空位
(*state)[row][col] = "#"
(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false
}
}
}
func nQueens(n int) [][][]string {
// 初始化 n*n 大小的棋盘其中 'Q' 代表皇后'#' 代表空位
state := make([][]string, n)
for i := 0; i < n; i++ {
row := make([]string, n)
for i := 0; i < n; i++ {
row[i] = "#"
}
state[i] = row
}
// 记录列是否有皇后
cols := make([]bool, n)
diags1 := make([]bool, 2*n-1)
diags2 := make([]bool, 2*n-1)
res := make([][][]string, 0)
backtrack(0, n, &state, &res, &cols, &diags1, &diags2)
return res
}
```
=== "Swift"
```swift title="n_queens.swift"
/* 回溯算法N 皇后 */
func backtrack(row: Int, n: Int, state: inout [[String]], res: inout [[[String]]], cols: inout [Bool], diags1: inout [Bool], diags2: inout [Bool]) {
// 当放置完所有行时记录解
if row == n {
res.append(state)
return
}
// 遍历所有列
for col in 0 ..< n {
// 计算该格子对应的主对角线和副对角线
let diag1 = row - col + n - 1
let diag2 = row + col
// 剪枝不允许该格子所在列主对角线副对角线存在皇后
if !cols[col] && !diags1[diag1] && !diags2[diag2] {
// 尝试将皇后放置在该格子
state[row][col] = "Q"
cols[col] = true
diags1[diag1] = true
diags2[diag2] = true
// 放置下一行
backtrack(row: row + 1, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)
// 回退将该格子恢复为空位
state[row][col] = "#"
cols[col] = false
diags1[diag1] = false
diags2[diag2] = false
}
}
}
/* 求解 N 皇后 */
func nQueens(n: Int) -> [[[String]]] {
// 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
var state = Array(repeating: Array(repeating: "#", count: n), count: n)
var cols = Array(repeating: false, count: n) // 记录列是否有皇后
var diags1 = Array(repeating: false, count: 2 * n - 1) // 记录主对角线是否有皇后
var diags2 = Array(repeating: false, count: 2 * n - 1) // 记录副对角线是否有皇后
var res: [[[String]]] = []
backtrack(row: 0, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)
return res
}
```
=== "JS"
```javascript title="n_queens.js"
/* 回溯算法N 皇后 */
function backtrack(row, n, state, res, cols, diags1, diags2) {
// 当放置完所有行时,记录解
if (row === n) {
res.push(state.map((row) => row.slice()));
return;
}
// 遍历所有列
for (let col = 0; col < n; col++) {
// 计算该格子对应的主对角线和副对角线
const diag1 = row - col + n - 1;
const diag2 = row + col;
// 剪枝不允许该格子所在列主对角线副对角线存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 尝试将皇后放置在该格子
state[row][col] = 'Q';
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退将该格子恢复为空位
state[row][col] = '#';
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 N 皇后 */
function nQueens(n) {
// 初始化 n*n 大小的棋盘其中 'Q' 代表皇后'#' 代表空位
const state = Array.from({ length: n }, () => Array(n).fill('#'));
const cols = Array(n).fill(false); // 记录列是否有皇后
const diags1 = Array(2 * n - 1).fill(false); // 记录主对角线是否有皇后
const diags2 = Array(2 * n - 1).fill(false); // 记录副对角线是否有皇后
const res = [];
backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
```
=== "TS"
```typescript title="n_queens.ts"
/* 回溯算法N 皇后 */
function backtrack(
row: number,
n: number,
state: string[][],
res: string[][][],
cols: boolean[],
diags1: boolean[],
diags2: boolean[]
): void {
// 当放置完所有行时,记录解
if (row === n) {
res.push(state.map((row) => row.slice()));
return;
}
// 遍历所有列
for (let col = 0; col < n; col++) {
// 计算该格子对应的主对角线和副对角线
const diag1 = row - col + n - 1;
const diag2 = row + col;
// 剪枝不允许该格子所在列主对角线副对角线存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 尝试将皇后放置在该格子
state[row][col] = 'Q';
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退将该格子恢复为空位
state[row][col] = '#';
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 N 皇后 */
function nQueens(n: number): string[][][] {
// 初始化 n*n 大小的棋盘其中 'Q' 代表皇后'#' 代表空位
const state = Array.from({ length: n }, () => Array(n).fill('#'));
const cols = Array(n).fill(false); // 记录列是否有皇后
const diags1 = Array(2 * n - 1).fill(false); // 记录主对角线是否有皇后
const diags2 = Array(2 * n - 1).fill(false); // 记录副对角线是否有皇后
const res: string[][][] = [];
backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
```
=== "Dart"
```dart title="n_queens.dart"
/* 回溯算法N 皇后 */
void backtrack(
int row,
int n,
List<List<String>> state,
List<List<List<String>>> res,
List<bool> cols,
List<bool> diags1,
List<bool> diags2,
) {
// 当放置完所有行时,记录解
if (row == n) {
List<List<String>> copyState = [];
for (List<String> sRow in state) {
copyState.add(List.from(sRow));
}
res.add(copyState);
return;
}
// 遍历所有列
for (int col = 0; col < n; col++) {
// 计算该格子对应的主对角线和副对角线
int diag1 = row - col + n - 1;
int diag2 = row + col;
// 剪枝不允许该格子所在列主对角线副对角线存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 尝试将皇后放置在该格子
state[row][col] = "Q";
cols[col] = true;
diags1[diag1] = true;
diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退将该格子恢复为空位
state[row][col] = "#";
cols[col] = false;
diags1[diag1] = false;
diags2[diag2] = false;
}
}
}
/* 求解 N 皇后 */
List<List<List<String>>> nQueens(int n) {
// 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
List<List<String>> state = List.generate(n, (index) => List.filled(n, "#"));
List<bool> cols = List.filled(n, false); // 记录列是否有皇后
List<bool> diags1 = List.filled(2 * n - 1, false); // 记录主对角线是否有皇后
List<bool> diags2 = List.filled(2 * n - 1, false); // 记录副对角线是否有皇后
List<List<List<String>>> res = [];
backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
```
=== "Rust"
```rust title="n_queens.rs"
/* 回溯算法N 皇后 */
fn backtrack(row: usize, n: usize, state: &mut Vec<Vec<String>>, res: &mut Vec<Vec<Vec<String>>>,
cols: &mut [bool], diags1: &mut [bool], diags2: &mut [bool]) {
// 当放置完所有行时,记录解
if row == n {
let mut copy_state: Vec<Vec<String>> = Vec::new();
for s_row in state.clone() {
copy_state.push(s_row);
}
res.push(copy_state);
return;
}
// 遍历所有列
for col in 0..n {
// 计算该格子对应的主对角线和副对角线
let diag1 = row + n - 1 - col;
let diag2 = row + col;
// 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后
if !cols[col] && !diags1[diag1] && !diags2[diag2] {
// 尝试:将皇后放置在该格子
state.get_mut(row).unwrap()[col] = "Q".into();
(cols[col], diags1[diag1], diags2[diag2]) = (true, true, true);
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退:将该格子恢复为空位
state.get_mut(row).unwrap()[col] = "#".into();
(cols[col], diags1[diag1], diags2[diag2]) = (false, false, false);
}
}
}
/* 求解 N 皇后 */
fn n_queens(n: usize) -> Vec<Vec<Vec<String>>> {
// 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
let mut state: Vec<Vec<String>> = Vec::new();
for _ in 0..n {
let mut row: Vec<String> = Vec::new();
for _ in 0..n {
row.push("#".into());
}
state.push(row);
}
let mut cols = vec![false; n]; // 记录列是否有皇后
let mut diags1 = vec![false; 2 * n - 1]; // 记录主对角线是否有皇后
let mut diags2 = vec![false; 2 * n - 1]; // 记录副对角线是否有皇后
let mut res: Vec<Vec<Vec<String>>> = Vec::new();
backtrack(0, n, &mut state, &mut res, &mut cols, &mut diags1, &mut diags2);
res
}
```
=== "C"
```c title="n_queens.c"
/* 放置结果 */
struct result {
char ***data;
int size;
};
typedef struct result Result;
/* 回溯算法N 皇后 */
void backtrack(int row, int n, char state[MAX_N][MAX_N], Result *res,
bool cols[MAX_N], bool diags1[2 * MAX_N - 1], bool diags2[2 * MAX_N - 1]) {
// 当放置完所有行时,记录解
if (row == n) {
res->data[res->size] = (char **)malloc(sizeof(char *) * n);
for (int i = 0; i < n; ++i) {
res->data[res->size][i] = (char *)malloc(sizeof(char) * (n + 1));
strcpy(res->data[res->size][i], state[i]);
}
res->size++;
return;
}
// 遍历所有列
for (int col = 0; col < n; col++) {
// 计算该格子对应的主对角线和副对角线
int diag1 = row - col + n - 1;
int diag2 = row + col;
// 剪枝不允许该格子所在列主对角线副对角线存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 尝试将皇后放置在该格子
state[row][col] = 'Q';
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退将该格子恢复为空位
state[row][col] = '#';
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 N 皇后 */
Result *nQueens(int n) {
char state[MAX_N][MAX_N];
// 初始化 n*n 大小的棋盘其中 'Q' 代表皇后'#' 代表空位
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
state[i][j] = '#';
}
state[i][n] = '\0';
}
bool cols[MAX_N] = {false}; // 记录列是否有皇后
bool diags1[2 * MAX_N - 1] = {false}; // 记录主对角线是否有皇后
bool diags2[2 * MAX_N - 1] = {false}; // 记录副对角线是否有皇后
Result *res = malloc(sizeof(Result));
res->data = (char ***)malloc(sizeof(char **) * MAX_RES);
res->size = 0;
backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
```
=== "Zig"
```zig title="n_queens.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{nQueens}
```
逐行放置 $n$ 次,考虑列约束,则从第一行到最后一行分别有 $n$、$n-1$、$\dots$、$2$、$1$ 个选择,**因此时间复杂度为 $O(n!)$** 。实际上,根据对角线约束的剪枝也能够大幅地缩小搜索空间,因而搜索效率往往优于以上时间复杂度。
数组 `state` 使用 $O(n^2)$ 空间,数组 `cols`、`diags1` 和 `diags2` 皆使用 $O(n)$ 空间。最大递归深度为 $n$ ,使用 $O(n)$ 栈帧空间。因此,**空间复杂度为 $O(n^2)$** 。