hello-algo/docs/chapter_sorting/merge_sort.md
2024-03-31 03:53:04 +08:00

34 KiB
Executable file
Raw Blame History

comments
true

11.6   归并排序

「归并排序 merge sort」是一种基于分治策略的排序算法包含图 11-10 所示的“划分”和“合并”阶段。

  1. 划分阶段:通过递归不断地将数组从中点处分开,将长数组的排序问题转换为短数组的排序问题。
  2. 合并阶段:当子数组长度为 1 时终止划分,开始合并,持续地将左右两个较短的有序数组合并为一个较长的有序数组,直至结束。

归并排序的划分与合并阶段{ class="animation-figure" }

图 11-10   归并排序的划分与合并阶段

11.6.1   算法流程

如图 11-11 所示,“划分阶段”从顶至底递归地将数组从中点切分为两个子数组。

  1. 计算数组中点 mid ,递归划分左子数组(区间 [left, mid] )和右子数组(区间 [mid + 1, right] )。
  2. 递归执行步骤 1. ,直至子数组区间长度为 1 时终止。

“合并阶段”从底至顶地将左子数组和右子数组合并为一个有序数组。需要注意的是,从长度为 1 的子数组开始合并,合并阶段中的每个子数组都是有序的。

=== "<1>" 归并排序步骤{ class="animation-figure" }

=== "<2>" merge_sort_step2{ class="animation-figure" }

=== "<3>" merge_sort_step3{ class="animation-figure" }

=== "<4>" merge_sort_step4{ class="animation-figure" }

=== "<5>" merge_sort_step5{ class="animation-figure" }

=== "<6>" merge_sort_step6{ class="animation-figure" }

=== "<7>" merge_sort_step7{ class="animation-figure" }

=== "<8>" merge_sort_step8{ class="animation-figure" }

=== "<9>" merge_sort_step9{ class="animation-figure" }

=== "<10>" merge_sort_step10{ class="animation-figure" }

图 11-11   归并排序步骤

观察发现,归并排序与二叉树后序遍历的递归顺序是一致的。

  • 后序遍历:先递归左子树,再递归右子树,最后处理根节点。
  • 归并排序:先递归左子数组,再递归右子数组,最后处理合并。

归并排序的实现如以下代码所示。请注意,nums 的待合并区间为 [left, right] ,而 tmp 的对应区间为 [0, right - left]

=== "Python"

```python title="merge_sort.py"
def merge(nums: list[int], left: int, mid: int, right: int):
    """合并左子数组和右子数组"""
    # 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
    # 创建一个临时数组 tmp ,用于存放合并后的结果
    tmp = [0] * (right - left + 1)
    # 初始化左子数组和右子数组的起始索引
    i, j, k = left, mid + 1, 0
    # 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
    while i <= mid and j <= right:
        if nums[i] <= nums[j]:
            tmp[k] = nums[i]
            i += 1
        else:
            tmp[k] = nums[j]
            j += 1
        k += 1
    # 将左子数组和右子数组的剩余元素复制到临时数组中
    while i <= mid:
        tmp[k] = nums[i]
        i += 1
        k += 1
    while j <= right:
        tmp[k] = nums[j]
        j += 1
        k += 1
    # 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
    for k in range(0, len(tmp)):
        nums[left + k] = tmp[k]

def merge_sort(nums: list[int], left: int, right: int):
    """归并排序"""
    # 终止条件
    if left >= right:
        return  # 当子数组长度为 1 时终止递归
    # 划分阶段
    mid = (left + right) // 2  # 计算中点
    merge_sort(nums, left, mid)  # 递归左子数组
    merge_sort(nums, mid + 1, right)  # 递归右子数组
    # 合并阶段
    merge(nums, left, mid, right)
```

=== "C++"

```cpp title="merge_sort.cpp"
/* 合并左子数组和右子数组 */
void merge(vector<int> &nums, int left, int mid, int right) {
    // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
    // 创建一个临时数组 tmp ,用于存放合并后的结果
    vector<int> tmp(right - left + 1);
    // 初始化左子数组和右子数组的起始索引
    int i = left, j = mid + 1, k = 0;
    // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
    while (i <= mid && j <= right) {
        if (nums[i] <= nums[j])
            tmp[k++] = nums[i++];
        else
            tmp[k++] = nums[j++];
    }
    // 将左子数组和右子数组的剩余元素复制到临时数组中
    while (i <= mid) {
        tmp[k++] = nums[i++];
    }
    while (j <= right) {
        tmp[k++] = nums[j++];
    }
    // 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
    for (k = 0; k < tmp.size(); k++) {
        nums[left + k] = tmp[k];
    }
}

/* 归并排序 */
void mergeSort(vector<int> &nums, int left, int right) {
    // 终止条件
    if (left >= right)
        return; // 当子数组长度为 1 时终止递归
    // 划分阶段
    int mid = (left + right) / 2;    // 计算中点
    mergeSort(nums, left, mid);      // 递归左子数组
    mergeSort(nums, mid + 1, right); // 递归右子数组
    // 合并阶段
    merge(nums, left, mid, right);
}
```

=== "Java"

```java title="merge_sort.java"
/* 合并左子数组和右子数组 */
void merge(int[] nums, int left, int mid, int right) {
    // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
    // 创建一个临时数组 tmp ,用于存放合并后的结果
    int[] tmp = new int[right - left + 1];
    // 初始化左子数组和右子数组的起始索引
    int i = left, j = mid + 1, k = 0;
    // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
    while (i <= mid && j <= right) {
        if (nums[i] <= nums[j])
            tmp[k++] = nums[i++];
        else
            tmp[k++] = nums[j++];
    }
    // 将左子数组和右子数组的剩余元素复制到临时数组中
    while (i <= mid) {
        tmp[k++] = nums[i++];
    }
    while (j <= right) {
        tmp[k++] = nums[j++];
    }
    // 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
    for (k = 0; k < tmp.length; k++) {
        nums[left + k] = tmp[k];
    }
}

/* 归并排序 */
void mergeSort(int[] nums, int left, int right) {
    // 终止条件
    if (left >= right)
        return; // 当子数组长度为 1 时终止递归
    // 划分阶段
    int mid = (left + right) / 2; // 计算中点
    mergeSort(nums, left, mid); // 递归左子数组
    mergeSort(nums, mid + 1, right); // 递归右子数组
    // 合并阶段
    merge(nums, left, mid, right);
}
```

=== "C#"

```csharp title="merge_sort.cs"
/* 合并左子数组和右子数组 */
void Merge(int[] nums, int left, int mid, int right) {
    // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
    // 创建一个临时数组 tmp ,用于存放合并后的结果
    int[] tmp = new int[right - left + 1];
    // 初始化左子数组和右子数组的起始索引
    int i = left, j = mid + 1, k = 0;
    // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
    while (i <= mid && j <= right) {
        if (nums[i] <= nums[j])
            tmp[k++] = nums[i++];
        else
            tmp[k++] = nums[j++];
    }
    // 将左子数组和右子数组的剩余元素复制到临时数组中
    while (i <= mid) {
        tmp[k++] = nums[i++];
    }
    while (j <= right) {
        tmp[k++] = nums[j++];
    }
    // 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
    for (k = 0; k < tmp.Length; ++k) {
        nums[left + k] = tmp[k];
    }
}

/* 归并排序 */
void MergeSort(int[] nums, int left, int right) {
    // 终止条件
    if (left >= right) return;       // 当子数组长度为 1 时终止递归
    // 划分阶段
    int mid = (left + right) / 2;    // 计算中点
    MergeSort(nums, left, mid);      // 递归左子数组
    MergeSort(nums, mid + 1, right); // 递归右子数组
    // 合并阶段
    Merge(nums, left, mid, right);
}
```

=== "Go"

```go title="merge_sort.go"
/* 合并左子数组和右子数组 */
func merge(nums []int, left, mid, right int) {
    // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
    // 创建一个临时数组 tmp ,用于存放合并后的结果
    tmp := make([]int, right-left+1)
    // 初始化左子数组和右子数组的起始索引
    i, j, k := left, mid+1, 0
    // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
    for i <= mid && j <= right {
        if nums[i] <= nums[j] {
            tmp[k] = nums[i]
            i++
        } else {
            tmp[k] = nums[j]
            j++
        }
        k++
    }
    // 将左子数组和右子数组的剩余元素复制到临时数组中
    for i <= mid {
        tmp[k] = nums[i]
        i++
        k++
    }
    for j <= right {
        tmp[k] = nums[j]
        j++
        k++
    }
    // 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
    for k := 0; k < len(tmp); k++ {
        nums[left+k] = tmp[k]
    }
}

/* 归并排序 */
func mergeSort(nums []int, left, right int) {
    // 终止条件
    if left >= right {
        return
    }
    // 划分阶段
    mid := (left + right) / 2
    mergeSort(nums, left, mid)
    mergeSort(nums, mid+1, right)
    // 合并阶段
    merge(nums, left, mid, right)
}
```

=== "Swift"

```swift title="merge_sort.swift"
/* 合并左子数组和右子数组 */
func merge(nums: inout [Int], left: Int, mid: Int, right: Int) {
    // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
    // 创建一个临时数组 tmp ,用于存放合并后的结果
    var tmp = Array(repeating: 0, count: right - left + 1)
    // 初始化左子数组和右子数组的起始索引
    var i = left, j = mid + 1, k = 0
    // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
    while i <= mid, j <= right {
        if nums[i] <= nums[j] {
            tmp[k] = nums[i]
            i += 1
        } else {
            tmp[k] = nums[j]
            j += 1
        }
        k += 1
    }
    // 将左子数组和右子数组的剩余元素复制到临时数组中
    while i <= mid {
        tmp[k] = nums[i]
        i += 1
        k += 1
    }
    while j <= right {
        tmp[k] = nums[j]
        j += 1
        k += 1
    }
    // 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
    for k in tmp.indices {
        nums[left + k] = tmp[k]
    }
}

/* 归并排序 */
func mergeSort(nums: inout [Int], left: Int, right: Int) {
    // 终止条件
    if left >= right { // 当子数组长度为 1 时终止递归
        return
    }
    // 划分阶段
    let mid = (left + right) / 2 // 计算中点
    mergeSort(nums: &nums, left: left, right: mid) // 递归左子数组
    mergeSort(nums: &nums, left: mid + 1, right: right) // 递归右子数组
    // 合并阶段
    merge(nums: &nums, left: left, mid: mid, right: right)
}
```

=== "JS"

```javascript title="merge_sort.js"
/* 合并左子数组和右子数组 */
function merge(nums, left, mid, right) {
    // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
    // 创建一个临时数组 tmp ,用于存放合并后的结果
    const tmp = new Array(right - left + 1);
    // 初始化左子数组和右子数组的起始索引
    let i = left,
        j = mid + 1,
        k = 0;
    // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
    while (i <= mid && j <= right) {
        if (nums[i] <= nums[j]) {
            tmp[k++] = nums[i++];
        } else {
            tmp[k++] = nums[j++];
        }
    }
    // 将左子数组和右子数组的剩余元素复制到临时数组中
    while (i <= mid) {
        tmp[k++] = nums[i++];
    }
    while (j <= right) {
        tmp[k++] = nums[j++];
    }
    // 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
    for (k = 0; k < tmp.length; k++) {
        nums[left + k] = tmp[k];
    }
}

/* 归并排序 */
function mergeSort(nums, left, right) {
    // 终止条件
    if (left >= right) return; // 当子数组长度为 1 时终止递归
    // 划分阶段
    let mid = Math.floor((left + right) / 2); // 计算中点
    mergeSort(nums, left, mid); // 递归左子数组
    mergeSort(nums, mid + 1, right); // 递归右子数组
    // 合并阶段
    merge(nums, left, mid, right);
}
```

=== "TS"

```typescript title="merge_sort.ts"
/* 合并左子数组和右子数组 */
function merge(nums: number[], left: number, mid: number, right: number): void {
    // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
    // 创建一个临时数组 tmp ,用于存放合并后的结果
    const tmp = new Array(right - left + 1);
    // 初始化左子数组和右子数组的起始索引
    let i = left,
        j = mid + 1,
        k = 0;
    // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
    while (i <= mid && j <= right) {
        if (nums[i] <= nums[j]) {
            tmp[k++] = nums[i++];
        } else {
            tmp[k++] = nums[j++];
        }
    }
    // 将左子数组和右子数组的剩余元素复制到临时数组中
    while (i <= mid) {
        tmp[k++] = nums[i++];
    }
    while (j <= right) {
        tmp[k++] = nums[j++];
    }
    // 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
    for (k = 0; k < tmp.length; k++) {
        nums[left + k] = tmp[k];
    }
}

/* 归并排序 */
function mergeSort(nums: number[], left: number, right: number): void {
    // 终止条件
    if (left >= right) return; // 当子数组长度为 1 时终止递归
    // 划分阶段
    let mid = Math.floor((left + right) / 2); // 计算中点
    mergeSort(nums, left, mid); // 递归左子数组
    mergeSort(nums, mid + 1, right); // 递归右子数组
    // 合并阶段
    merge(nums, left, mid, right);
}
```

=== "Dart"

```dart title="merge_sort.dart"
/* 合并左子数组和右子数组 */
void merge(List<int> nums, int left, int mid, int right) {
  // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
  // 创建一个临时数组 tmp ,用于存放合并后的结果
  List<int> tmp = List.filled(right - left + 1, 0);
  // 初始化左子数组和右子数组的起始索引
  int i = left, j = mid + 1, k = 0;
  // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
  while (i <= mid && j <= right) {
    if (nums[i] <= nums[j])
      tmp[k++] = nums[i++];
    else
      tmp[k++] = nums[j++];
  }
  // 将左子数组和右子数组的剩余元素复制到临时数组中
  while (i <= mid) {
    tmp[k++] = nums[i++];
  }
  while (j <= right) {
    tmp[k++] = nums[j++];
  }
  // 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
  for (k = 0; k < tmp.length; k++) {
    nums[left + k] = tmp[k];
  }
}

/* 归并排序 */
void mergeSort(List<int> nums, int left, int right) {
  // 终止条件
  if (left >= right) return; // 当子数组长度为 1 时终止递归
  // 划分阶段
  int mid = (left + right) ~/ 2; // 计算中点
  mergeSort(nums, left, mid); // 递归左子数组
  mergeSort(nums, mid + 1, right); // 递归右子数组
  // 合并阶段
  merge(nums, left, mid, right);
}
```

=== "Rust"

```rust title="merge_sort.rs"
/* 合并左子数组和右子数组 */
fn merge(nums: &mut [i32], left: usize, mid: usize, right: usize) {
    // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
    // 创建一个临时数组 tmp ,用于存放合并后的结果
    let tmp_size = right - left + 1;
    let mut tmp = vec![0; tmp_size];
    // 初始化左子数组和右子数组的起始索引
    let (mut i, mut j, mut k) = (left, mid + 1, 0);
    // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
    while i <= mid && j <= right {
        if nums[i] <= nums[j] {
            tmp[k] = nums[j];
            i += 1;
        } else {
            tmp[k] = nums[j];
            j += 1;
        }
        k += 1;
    }
    // 将左子数组和右子数组的剩余元素复制到临时数组中
    while i <= mid {
        tmp[k] = nums[i];
        k += 1;
        i += 1;
    }
    while j <= right {
        tmp[k] = nums[j];
        k += 1;
        j += 1;
    }
    // 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
    for k in 0..tmp_size {
        nums[left + k] = tmp[k];
    }
}

/* 归并排序 */
fn merge_sort(nums: &mut [i32], left: usize, right: usize) {
    // 终止条件
    if left >= right {
        return; // 当子数组长度为 1 时终止递归
    }

    // 划分阶段
    let mid = (left + right) / 2; // 计算中点
    merge_sort(nums, left, mid); // 递归左子数组
    merge_sort(nums, mid + 1, right); // 递归右子数组

    // 合并阶段
    merge(nums, left, mid, right);
}
```

=== "C"

```c title="merge_sort.c"
/* 合并左子数组和右子数组 */
void merge(int *nums, int left, int mid, int right) {
    // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
    // 创建一个临时数组 tmp ,用于存放合并后的结果
    int tmpSize = right - left + 1;
    int *tmp = (int *)malloc(tmpSize * sizeof(int));
    // 初始化左子数组和右子数组的起始索引
    int i = left, j = mid + 1, k = 0;
    // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
    while (i <= mid && j <= right) {
        if (nums[i] <= nums[j]) {
            tmp[k++] = nums[i++];
        } else {
            tmp[k++] = nums[j++];
        }
    }
    // 将左子数组和右子数组的剩余元素复制到临时数组中
    while (i <= mid) {
        tmp[k++] = nums[i++];
    }
    while (j <= right) {
        tmp[k++] = nums[j++];
    }
    // 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
    for (k = 0; k < tmpSize; ++k) {
        nums[left + k] = tmp[k];
    }
    // 释放内存
    free(tmp);
}

/* 归并排序 */
void mergeSort(int *nums, int left, int right) {
    // 终止条件
    if (left >= right)
        return; // 当子数组长度为 1 时终止递归
    // 划分阶段
    int mid = (left + right) / 2;    // 计算中点
    mergeSort(nums, left, mid);      // 递归左子数组
    mergeSort(nums, mid + 1, right); // 递归右子数组
    // 合并阶段
    merge(nums, left, mid, right);
}
```

=== "Kotlin"

```kotlin title="merge_sort.kt"
/* 合并左子数组和右子数组 */
fun merge(nums: IntArray, left: Int, mid: Int, right: Int) {
    // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
    // 创建一个临时数组 tmp ,用于存放合并后的结果
    val tmp = IntArray(right - left + 1)
    // 初始化左子数组和右子数组的起始索引
    var i = left
    var j = mid + 1
    var k = 0
    // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
    while (i <= mid && j <= right) {
        if (nums[i] <= nums[j]) tmp[k++] = nums[i++]
        else tmp[k++] = nums[j++]
    }
    // 将左子数组和右子数组的剩余元素复制到临时数组中
    while (i <= mid) {
        tmp[k++] = nums[i++]
    }
    while (j <= right) {
        tmp[k++] = nums[j++]
    }
    // 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
    for (l in tmp.indices) {
        nums[left + l] = tmp[l]
    }
}

/* 归并排序 */
fun mergeSort(nums: IntArray, left: Int, right: Int) {
    // 终止条件
    if (left >= right) return  // 当子数组长度为 1 时终止递归
    // 划分阶段
    val mid = (left + right) / 2 // 计算中点
    mergeSort(nums, left, mid) // 递归左子数组
    mergeSort(nums, mid + 1, right) // 递归右子数组
    // 合并阶段
    merge(nums, left, mid, right)
}
```

=== "Ruby"

```ruby title="merge_sort.rb"
[class]{}-[func]{merge}

[class]{}-[func]{merge_sort}
```

=== "Zig"

```zig title="merge_sort.zig"
// 合并左子数组和右子数组
// 左子数组区间 [left, mid]
// 右子数组区间 [mid + 1, right]
fn merge(nums: []i32, left: usize, mid: usize, right: usize) !void {
    // 初始化辅助数组
    var mem_arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);
    defer mem_arena.deinit();
    const mem_allocator = mem_arena.allocator();
    var tmp = try mem_allocator.alloc(i32, right + 1 - left);
    std.mem.copy(i32, tmp, nums[left..right+1]);
    // 左子数组的起始索引和结束索引  
    var leftStart = left - left;
    var leftEnd = mid - left;
    // 右子数组的起始索引和结束索引       
    var rightStart = mid + 1 - left;
    var rightEnd = right - left;
    // i, j 分别指向左子数组、右子数组的首元素
    var i = leftStart;
    var j = rightStart;
    // 通过覆盖原数组 nums 来合并左子数组和右子数组
    var k = left;
    while (k <= right) : (k += 1) {
        // 若“左子数组已全部合并完”,则选取右子数组元素,并且 j++
        if (i > leftEnd) {
            nums[k] = tmp[j];
            j += 1;
        // 否则,若“右子数组已全部合并完”或“左子数组元素 <= 右子数组元素”,则选取左子数组元素,并且 i++
        } else if  (j > rightEnd or tmp[i] <= tmp[j]) {
            nums[k] = tmp[i];
            i += 1;
        // 否则,若“左右子数组都未全部合并完”且“左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
        } else {
            nums[k] = tmp[j];
            j += 1;
        }
    }
}

// 归并排序
fn mergeSort(nums: []i32, left: usize, right: usize) !void {
    // 终止条件
    if (left >= right) return;              // 当子数组长度为 1 时终止递归
    // 划分阶段
    var mid = (left + right) / 2;           // 计算中点
    try mergeSort(nums, left, mid);         // 递归左子数组
    try mergeSort(nums, mid + 1, right);    // 递归右子数组
    // 合并阶段
    try merge(nums, left, mid, right);
}
```

??? pythontutor "可视化运行"

<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20merge%28nums%3A%20list%5Bint%5D,%20left%3A%20int,%20mid%3A%20int,%20right%3A%20int%29%3A%0A%20%20%20%20%22%22%22%E5%90%88%E5%B9%B6%E5%B7%A6%E5%AD%90%E6%95%B0%E7%BB%84%E5%92%8C%E5%8F%B3%E5%AD%90%E6%95%B0%E7%BB%84%22%22%22%0A%20%20%20%20%23%20%E5%B7%A6%E5%AD%90%E6%95%B0%E7%BB%84%E5%8C%BA%E9%97%B4%E4%B8%BA%20%5Bleft,%20mid%5D,%20%E5%8F%B3%E5%AD%90%E6%95%B0%E7%BB%84%E5%8C%BA%E9%97%B4%E4%B8%BA%20%5Bmid%2B1,%20right%5D%0A%20%20%20%20%23%20%E5%88%9B%E5%BB%BA%E4%B8%80%E4%B8%AA%E4%B8%B4%E6%97%B6%E6%95%B0%E7%BB%84%20tmp%20%EF%BC%8C%E7%94%A8%E4%BA%8E%E5%AD%98%E6%94%BE%E5%90%88%E5%B9%B6%E5%90%8E%E7%9A%84%E7%BB%93%E6%9E%9C%0A%20%20%20%20tmp%20%3D%20%5B0%5D%20*%20%28right%20-%20left%20%2B%201%29%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%B7%A6%E5%AD%90%E6%95%B0%E7%BB%84%E5%92%8C%E5%8F%B3%E5%AD%90%E6%95%B0%E7%BB%84%E7%9A%84%E8%B5%B7%E5%A7%8B%E7%B4%A2%E5%BC%95%0A%20%20%20%20i,%20j,%20k%20%3D%20left,%20mid%20%2B%201,%200%0A%20%20%20%20%23%20%E5%BD%93%E5%B7%A6%E5%8F%B3%E5%AD%90%E6%95%B0%E7%BB%84%E9%83%BD%E8%BF%98%E6%9C%89%E5%85%83%E7%B4%A0%E6%97%B6%EF%BC%8C%E8%BF%9B%E8%A1%8C%E6%AF%94%E8%BE%83%E5%B9%B6%E5%B0%86%E8%BE%83%E5%B0%8F%E7%9A%84%E5%85%83%E7%B4%A0%E5%A4%8D%E5%88%B6%E5%88%B0%E4%B8%B4%E6%97%B6%E6%95%B0%E7%BB%84%E4%B8%AD%0A%20%20%20%20while%20i%20%3C%3D%20mid%20and%20j%20%3C%3D%20right%3A%0A%20%20%20%20%20%20%20%20if%20nums%5Bi%5D%20%3C%3D%20nums%5Bj%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20tmp%5Bk%5D%20%3D%20nums%5Bi%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%2B%3D%201%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20tmp%5Bk%5D%20%3D%20nums%5Bj%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%2B%3D%201%0A%20%20%20%20%20%20%20%20k%20%2B%3D%201%0A%20%20%20%20%23%20%E5%B0%86%E5%B7%A6%E5%AD%90%E6%95%B0%E7%BB%84%E5%92%8C%E5%8F%B3%E5%AD%90%E6%95%B0%E7%BB%84%E7%9A%84%E5%89%A9%E4%BD%99%E5%85%83%E7%B4%A0%E5%A4%8D%E5%88%B6%E5%88%B0%E4%B8%B4%E6%97%B6%E6%95%B0%E7%BB%84%E4%B8%AD%0A%20%20%20%20while%20i%20%3C%3D%20mid%3A%0A%20%20%20%20%20%20%20%20tmp%5Bk%5D%20%3D%20nums%5Bi%5D%0A%20%20%20%20%20%20%20%20i%20%2B%3D%201%0A%20%20%20%20%20%20%20%20k%20%2B%3D%201%0A%20%20%20%20while%20j%20%3C%3D%20right%3A%0A%20%20%20%20%20%20%20%20tmp%5Bk%5D%20%3D%20nums%5Bj%5D%0A%20%20%20%20%20%20%20%20j%20%2B%3D%201%0A%20%20%20%20%20%20%20%20k%20%2B%3D%201%0A%20%20%20%20%23%20%E5%B0%86%E4%B8%B4%E6%97%B6%E6%95%B0%E7%BB%84%20tmp%20%E4%B8%AD%E7%9A%84%E5%85%83%E7%B4%A0%E5%A4%8D%E5%88%B6%E5%9B%9E%E5%8E%9F%E6%95%B0%E7%BB%84%20nums%20%E7%9A%84%E5%AF%B9%E5%BA%94%E5%8C%BA%E9%97%B4%0A%20%20%20%20for%20k%20in%20range%280,%20len%28tmp%29%29%3A%0A%20%20%20%20%20%20%20%20nums%5Bleft%20%2B%20k%5D%20%3D%20tmp%5Bk%5D%0A%0A%0Adef%20merge_sort%28nums%3A%20list%5Bint%5D,%20left%3A%20int,%20right%3A%20int%29%3A%0A%20%20%20%20%22%22%22%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F%22%22%22%0A%20%20%20%20%23%20%E7%BB%88%E6%AD%A2%E6%9D%A1%E4%BB%B6%0A%20%20%20%20if%20left%20%3E%3D%20right%3A%0A%20%20%20%20%20%20%20%20return%20%20%23%20%E5%BD%93%E5%AD%90%E6%95%B0%E7%BB%84%E9%95%BF%E5%BA%A6%E4%B8%BA%201%20%E6%97%B6%E7%BB%88%E6%AD%A2%E9%80%92%E5%BD%92%0A%20%20%20%20%23%20%E5%88%92%E5%88%86%E9%98%B6%E6%AE%B5%0A%20%20%20%20mid%20%3D%20%28left%20%2B%20right%29%20//%202%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%0A%20%20%20%20merge_sort%28nums,%20left,%20mid%29%20%20%23%20%E9%80%92%E5%BD%92%E5%B7%A6%E5%AD%90%E6%95%B0%E7%BB%84%0A%20%20%20%20merge_sort%28nums,%20mid%20%2B%201,%20right%29%20%20%23%20%E9%80%92%E5%BD%92%E5%8F%B3%E5%AD%90%E6%95%B0%E7%BB%84%0A%20%20%20%20%23%20%E5%90%88%E5%B9%B6%E9%98%B6%E6%AE%B5%0A%20%20%20%20merge%28nums,%20left,%20mid,%20right%29%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B7,%203,%202,%206,%200,%201,%205,%204%5D%0A%20%20%20%20merge_sort%28nums,%200,%20len%28nums%29%20-%201%29%0A%20%20%20%20print%28%22%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F%E5%AE%8C%E6%88%90%E5%90%8E%20nums%20%3D%22,%20nums%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20merge%28nums%3A%20list%5Bint%5D,%20left%3A%20int,%20mid%3A%20int,%20right%3A%20int%29%3A%0A%20%20%20%20%22%22%22%E5%90%88%E5%B9%B6%E5%B7%A6%E5%AD%90%E6%95%B0%E7%BB%84%E5%92%8C%E5%8F%B3%E5%AD%90%E6%95%B0%E7%BB%84%22%22%22%0A%20%20%20%20%23%20%E5%B7%A6%E5%AD%90%E6%95%B0%E7%BB%84%E5%8C%BA%E9%97%B4%E4%B8%BA%20%5Bleft,%20mid%5D,%20%E5%8F%B3%E5%AD%90%E6%95%B0%E7%BB%84%E5%8C%BA%E9%97%B4%E4%B8%BA%20%5Bmid%2B1,%20right%5D%0A%20%20%20%20%23%20%E5%88%9B%E5%BB%BA%E4%B8%80%E4%B8%AA%E4%B8%B4%E6%97%B6%E6%95%B0%E7%BB%84%20tmp%20%EF%BC%8C%E7%94%A8%E4%BA%8E%E5%AD%98%E6%94%BE%E5%90%88%E5%B9%B6%E5%90%8E%E7%9A%84%E7%BB%93%E6%9E%9C%0A%20%20%20%20tmp%20%3D%20%5B0%5D%20*%20%28right%20-%20left%20%2B%201%29%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%B7%A6%E5%AD%90%E6%95%B0%E7%BB%84%E5%92%8C%E5%8F%B3%E5%AD%90%E6%95%B0%E7%BB%84%E7%9A%84%E8%B5%B7%E5%A7%8B%E7%B4%A2%E5%BC%95%0A%20%20%20%20i,%20j,%20k%20%3D%20left,%20mid%20%2B%201,%200%0A%20%20%20%20%23%20%E5%BD%93%E5%B7%A6%E5%8F%B3%E5%AD%90%E6%95%B0%E7%BB%84%E9%83%BD%E8%BF%98%E6%9C%89%E5%85%83%E7%B4%A0%E6%97%B6%EF%BC%8C%E8%BF%9B%E8%A1%8C%E6%AF%94%E8%BE%83%E5%B9%B6%E5%B0%86%E8%BE%83%E5%B0%8F%E7%9A%84%E5%85%83%E7%B4%A0%E5%A4%8D%E5%88%B6%E5%88%B0%E4%B8%B4%E6%97%B6%E6%95%B0%E7%BB%84%E4%B8%AD%0A%20%20%20%20while%20i%20%3C%3D%20mid%20and%20j%20%3C%3D%20right%3A%0A%20%20%20%20%20%20%20%20if%20nums%5Bi%5D%20%3C%3D%20nums%5Bj%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20tmp%5Bk%5D%20%3D%20nums%5Bi%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%2B%3D%201%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20tmp%5Bk%5D%20%3D%20nums%5Bj%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%2B%3D%201%0A%20%20%20%20%20%20%20%20k%20%2B%3D%201%0A%20%20%20%20%23%20%E5%B0%86%E5%B7%A6%E5%AD%90%E6%95%B0%E7%BB%84%E5%92%8C%E5%8F%B3%E5%AD%90%E6%95%B0%E7%BB%84%E7%9A%84%E5%89%A9%E4%BD%99%E5%85%83%E7%B4%A0%E5%A4%8D%E5%88%B6%E5%88%B0%E4%B8%B4%E6%97%B6%E6%95%B0%E7%BB%84%E4%B8%AD%0A%20%20%20%20while%20i%20%3C%3D%20mid%3A%0A%20%20%20%20%20%20%20%20tmp%5Bk%5D%20%3D%20nums%5Bi%5D%0A%20%20%20%20%20%20%20%20i%20%2B%3D%201%0A%20%20%20%20%20%20%20%20k%20%2B%3D%201%0A%20%20%20%20while%20j%20%3C%3D%20right%3A%0A%20%20%20%20%20%20%20%20tmp%5Bk%5D%20%3D%20nums%5Bj%5D%0A%20%20%20%20%20%20%20%20j%20%2B%3D%201%0A%20%20%20%20%20%20%20%20k%20%2B%3D%201%0A%20%20%20%20%23%20%E5%B0%86%E4%B8%B4%E6%97%B6%E6%95%B0%E7%BB%84%20tmp%20%E4%B8%AD%E7%9A%84%E5%85%83%E7%B4%A0%E5%A4%8D%E5%88%B6%E5%9B%9E%E5%8E%9F%E6%95%B0%E7%BB%84%20nums%20%E7%9A%84%E5%AF%B9%E5%BA%94%E5%8C%BA%E9%97%B4%0A%20%20%20%20for%20k%20in%20range%280,%20len%28tmp%29%29%3A%0A%20%20%20%20%20%20%20%20nums%5Bleft%20%2B%20k%5D%20%3D%20tmp%5Bk%5D%0A%0A%0Adef%20merge_sort%28nums%3A%20list%5Bint%5D,%20left%3A%20int,%20right%3A%20int%29%3A%0A%20%20%20%20%22%22%22%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F%22%22%22%0A%20%20%20%20%23%20%E7%BB%88%E6%AD%A2%E6%9D%A1%E4%BB%B6%0A%20%20%20%20if%20left%20%3E%3D%20right%3A%0A%20%20%20%20%20%20%20%20return%20%20%23%20%E5%BD%93%E5%AD%90%E6%95%B0%E7%BB%84%E9%95%BF%E5%BA%A6%E4%B8%BA%201%20%E6%97%B6%E7%BB%88%E6%AD%A2%E9%80%92%E5%BD%92%0A%20%20%20%20%23%20%E5%88%92%E5%88%86%E9%98%B6%E6%AE%B5%0A%20%20%20%20mid%20%3D%20%28left%20%2B%20right%29%20//%202%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%0A%20%20%20%20merge_sort%28nums,%20left,%20mid%29%20%20%23%20%E9%80%92%E5%BD%92%E5%B7%A6%E5%AD%90%E6%95%B0%E7%BB%84%0A%20%20%20%20merge_sort%28nums,%20mid%20%2B%201,%20right%29%20%20%23%20%E9%80%92%E5%BD%92%E5%8F%B3%E5%AD%90%E6%95%B0%E7%BB%84%0A%20%20%20%20%23%20%E5%90%88%E5%B9%B6%E9%98%B6%E6%AE%B5%0A%20%20%20%20merge%28nums,%20left,%20mid,%20right%29%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B7,%203,%202,%206,%200,%201,%205,%204%5D%0A%20%20%20%20merge_sort%28nums,%200,%20len%28nums%29%20-%201%29%0A%20%20%20%20print%28%22%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F%E5%AE%8C%E6%88%90%E5%90%8E%20nums%20%3D%22,%20nums%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全屏观看 ></a></div>

11.6.2   算法特性

  • 时间复杂度为 $O(n \log n)$、非自适应排序:划分产生高度为 \log n 的递归树,每层合并的总操作数量为 n ,因此总体时间复杂度为 O(n \log n)
  • 空间复杂度为 $O(n)$、非原地排序:递归深度为 \log n ,使用 O(\log n) 大小的栈帧空间。合并操作需要借助辅助数组实现,使用 O(n) 大小的额外空间。
  • 稳定排序:在合并过程中,相等元素的次序保持不变。

11.6.3   链表排序

对于链表,归并排序相较于其他排序算法具有显著优势,可以将链表排序任务的空间复杂度优化至 $O(1)$

  • 划分阶段:可以使用“迭代”替代“递归”来实现链表划分工作,从而省去递归使用的栈帧空间。
  • 合并阶段:在链表中,节点增删操作仅需改变引用(指针)即可实现,因此合并阶段(将两个短有序链表合并为一个长有序链表)无须创建额外链表。

具体实现细节比较复杂,有兴趣的读者可以查阅相关资料进行学习。