hello-algo/docs/chapter_sorting/counting_sort.md

6.5 KiB
Raw Blame History

计数排序

「计数排序 Counting Sort」通过统计元素数量来实现排序通常应用于整数数组。

简单实现

先来看一个简单的例子。给定一个长度为 n 的数组 nums ,其中的元素都是“非负整数”。计数排序的整体流程如下:

  1. 遍历数组,找出数组中的最大数字,记为 m ,然后创建一个长度为 m + 1 的辅助数组 counter
  2. 借助 counter 统计 nums 中各数字的出现次数,其中 counter[num] 对应数字 num 的出现次数。统计方法很简单,只需遍历 nums(设当前数字为 num),每轮将 counter[num] 增加 1 即可。
  3. 由于 counter 的各个索引天然有序,因此相当于所有数字已经被排序好了。接下来,我们遍历 counter ,根据各数字的出现次数,将它们按从小到大的顺序填入 nums 即可。

计数排序流程

=== "Java"

```java title="counting_sort.java"
[class]{counting_sort}-[func]{countingSortNaive}
```

=== "C++"

```cpp title="counting_sort.cpp"
[class]{}-[func]{countingSortNaive}
```

=== "Python"

```python title="counting_sort.py"
[class]{}-[func]{counting_sort_naive}
```

=== "Go"

```go title="counting_sort.go"
[class]{}-[func]{countingSortNaive}
```

=== "JavaScript"

```javascript title="counting_sort.js"
[class]{}-[func]{countingSortNaive}
```

=== "TypeScript"

```typescript title="counting_sort.ts"
[class]{}-[func]{countingSortNaive}
```

=== "C"

```c title="counting_sort.c"
[class]{}-[func]{countingSortNaive}
```

=== "C#"

```csharp title="counting_sort.cs"
[class]{counting_sort}-[func]{countingSortNaive}
```

=== "Swift"

```swift title="counting_sort.swift"
[class]{}-[func]{countingSortNaive}
```

=== "Zig"

```zig title="counting_sort.zig"
[class]{}-[func]{countingSortNaive}
```

!!! note "计数排序与桶排序的联系"

从桶排序的角度看,我们可以将计数排序中的计数数组 `counter` 的每个索引视为一个桶,将统计数量的过程看作是将各个元素分配到对应的桶中。本质上,计数排序是桶排序在整型数据下的一个特例。

完整实现

细心的同学可能发现,如果输入数据是对象,上述步骤 3. 就失效了。例如,输入数据是商品对象,我们想要按照商品价格(类的成员变量)对商品进行排序,而上述算法只能给出价格的排序结果。

那么如何才能得到原数据的排序结果呢?我们首先计算 counter 的「前缀和」。顾名思义,索引 i 处的前缀和 prefix[i] 等于数组前 i 个元素之和,即

$$ \text{prefix}[i] = \sum_{j=0}^i \text{counter[j]}

前缀和具有明确的意义,prefix[num] - 1 代表元素 num 在结果数组 res 中最后一次出现的索引。这个信息非常关键,因为它告诉我们各个元素应该出现在结果数组的哪个位置。接下来,我们倒序遍历原数组 nums 的每个元素 num ,在每轮迭代中执行:

  1. num 填入数组 res 的索引 prefix[num] - 1 处;
  2. 令前缀和 prefix[num] 减小 1 ,从而得到下次放置 num 的索引;

遍历完成后,数组 res 中就是排序好的结果,最后使用 res 覆盖原数组 nums 即可。

=== "<1>" counting_sort_step1

=== "<2>" counting_sort_step2

=== "<3>" counting_sort_step3

=== "<4>" counting_sort_step4

=== "<5>" counting_sort_step5

=== "<6>" counting_sort_step6

=== "<7>" counting_sort_step7

=== "<8>" counting_sort_step8

计数排序的实现代码如下所示。

=== "Java"

```java title="counting_sort.java"
[class]{counting_sort}-[func]{countingSort}
```

=== "C++"

```cpp title="counting_sort.cpp"
[class]{}-[func]{countingSort}
```

=== "Python"

```python title="counting_sort.py"
[class]{}-[func]{counting_sort}
```

=== "Go"

```go title="counting_sort.go"
[class]{}-[func]{countingSort}
```

=== "JavaScript"

```javascript title="counting_sort.js"
[class]{}-[func]{countingSort}
```

=== "TypeScript"

```typescript title="counting_sort.ts"
[class]{}-[func]{countingSort}
```

=== "C"

```c title="counting_sort.c"
[class]{}-[func]{countingSort}
```

=== "C#"

```csharp title="counting_sort.cs"
[class]{counting_sort}-[func]{countingSort}
```

=== "Swift"

```swift title="counting_sort.swift"
[class]{}-[func]{countingSort}
```

=== "Zig"

```zig title="counting_sort.zig"
[class]{}-[func]{countingSort}
```

算法特性

时间复杂度 $O(n + m)$ :涉及遍历 nums 和遍历 counter ,都使用线性时间。一般情况下 n \gg m ,时间复杂度趋于 O(n)

空间复杂度 $O(n + m)$ :借助了长度分别为 nm 的数组 rescounter ,因此是“非原地排序”。

稳定排序:由于向 res 中填充元素的顺序是“从右向左”的,因此倒序遍历 nums 可以避免改变相等元素之间的相对位置,从而实现“稳定排序”。实际上,正序遍历 nums 也可以得到正确的排序结果,但结果是“非稳定”的。

局限性

看到这里,你也许会觉得计数排序非常巧妙,仅通过统计数量就可以实现高效的排序工作。然而,使用计数排序的前置条件相对较为严格。

计数排序只适用于非负整数。若想要将其用于其他类型的数据,需要确保这些数据可以被转换为非负整数,并且在转换过程中不能改变各个元素之间的相对大小关系。例如,对于包含负数的整数数组,可以先给所有数字加上一个常数,将全部数字转化为正数,排序完成后再转换回去即可。

计数排序适用于数据量大但数据范围较小的情况。比如,在上述示例中 m 不能太大,否则会占用过多空间。而当 n \ll m 时,计数排序使用 O(m) 时间,可能比 O(n \log n) 的排序算法还要慢。