7.5 KiB
comments |
---|
true |
3.4. 字符集与编码
在计算机中,所有数据都是以二进制数的形式存储的,字符 char
也不例外。为了表示字符,我们需要建立一套「字符集」,规定每个字符和二进制数之间的一一对应关系。有了字符集之后,计算机就可以通过查表完成二进制数到字符的转换。
3.4.1. ASCII 字符集
「ASCII 码」是最早出现的字符集,全称为“美国标准信息交换代码”。它使用 7 位二进制数(即一个字节的前 7 位)表示一个字符,最多能够表示 128 个不同的字符。这包括英文字母的大小写、数字 0-9 、一些标点符号,以及一些控制字符(如换行符和制表符)。
Fig. ASCII 码
然而,ASCII 码仅局限于表示英文。随着计算机的全球化,一种能够表示更多语言的字符集「EASCII」应运而生。它在 ASCII 的 7 位基础上扩展到 8 位,能够表示 256 个不同的字符。世界陆续诞生了一批适用于不同地区的 EASCII 字符集。这些字符集的前 128 个字符统一为 ASCII 码,后 128 个字符定义了不同语言的字符。
3.4.2. GBK 字符集
EASCII 码仍然无法满足许多语言的字符数量要求。例如,汉字大约有近十万个,光日常使用的就有几千个。为此,中国国家标准总局于 1980 年发布了「GB2312」字符集,其收录了 6763 个汉字,基本满足了汉字的计算机处理需要。
然而,GB2312 无法处理部分的罕见字和繁体字。之后在 GB2312 的基础上,扩展得到了「GBK」字符集,它共收录了 21886 个汉字。在 GBK 编码方案中,ASCII 字符使用一个字节表示,汉字使用两个字节表示。
3.4.3. Unicode 字符集
随着计算机的蓬勃发展,在世界范围内诞生了许多字符集与编码标准,而这带来了许多问题。一方面,这些字符集一般只定义了某种特定语言的字符,无法实现跨语言解析;另一方面,同一种语言也存在多种字符集,如果两台电脑安装的是不同的编码标准,则在信息传递时就会出现乱码。
那个时代的人们会想:如果推出一个足够完整的字符集,将世界范围内的所有语言和符号都纳入其中,不就可以解决跨语言环境和乱码问题了吗?在这种思考下,一个庞大的字符集 Unicode 应运而生。
「Unicode」的全称为“统一字符编码”,理论上能容纳一百多万个字符。它致力于将全球范围内的字符纳入到统一的字符集之中,提供一种通用的字符集来处理和显示各种语言文字,减少因为编码标准不同而产生的乱码问题。
自 1991 年发布以来,Unicode 不断扩充新的语言与字符。截止 2022 年 9 月,Unicode 已经包含 149186 个字符,包括各种语言的字符、符号、甚至是表情符号等。在庞大的 Unicode 字符集中,常用的字符占用 2 字节,有些生僻的字符占 3 字节甚至 4 字节。
Unicode 是一种字符集标准,本质上是给每个字符分配一个编号(称为“码点”),但它并没有规定在计算机中如何存储这些字符码点。我们不禁会问:当多种长度的 Unicode 码点同时出现在同一个文本中时,系统如何解析字符?例如,给定一个长度为 2 字节的编码,系统如何确认它是一个 2 字节的字符还是两个 1 字节的字符?
最直接的解决方案是将所有字符存储为等长的编码。如下图所示,“Hello”中的每个字符占用 1 字节,“算法”中的每个字符占用 2 字节。我们可以通过高位填 0 ,将“Hello 算法”中的所有字符都编码为 2 字节长度。这样系统就可以每隔 2 字节解析一个字符,恢复出这个短语的内容了。
Fig. Unicode 编码示例
然而,ASCII 码已经向我们证明,编码英文只需要 1 字节。若采用上述方案,英文文本占用空间的大小将会是 ASCII 编码下大小的 2 倍,非常浪费内存空间。因此,我们需要一种更加高效的 Unicode 编码方法。
3.4.4. UTF-8 编码
随着互联网的发展,UTF-8 成为国际上使用最广泛的 Unicode 编码方法。它是一种可变长的编码,使用 1 到 4 个字节来表示一个字符,根据字符的复杂性而变。ASCII 字符只需要 1 个字节,拉丁字母和希腊字母需要 2 个字节,常用的中文字符需要 3 个字节,其他的一些生僻字符需要 4 个字节。UTF-8 的编码规则是:
- 对于长度为 1 字节的字符,将最高位设置为 0 、其余 7 位设置为 Unicode 码点。值得注意的是,ASCII 字符在 Unicode 字符集中占据了前 128 个码点。也就是说,UTF-8 编码可以向下兼容 ASCII 码。这意味着我们可以使用 UTF-8 来解析年代久远的 ASCII 码文本。
- 对于长度为
n
字节的字符(其中 $n > 1$),将首个字节的高n
位都设置为1
、第n + 1
位设置为0
;从第二个字节开始,将每个字节的高 2 位都设置为10
;其余所有位用于填充字符的 Unicode 码点。
下图展示了“Hello算法”对应的 UTF-8 编码。将最高 n
位设置为 1
比较容易理解,可以向系统指出字符的长度为 n
。那么,为什么要将其余所有字节的高 2 位都设置为 10
呢?实际上,这个 10
能够起到校验符的作用,因为在 UTF-8 编码规则下,不可能有字符的最高两位是 10
。这是因为长度为 1 字节的字符的最高一位是 0
。假设系统从一个错误的字节开始解析文本,字节头部的 10
能够帮助系统快速的判断出异常。
Fig. UTF-8 编码示例
除了 UTF-8 之外,常见的编码方式还包括 UTF-16 和 UTF-32 。它们为 Unicode 字符集提供了不同的编码方法。
- UTF-16 编码:使用 2 或 4 个字节来表示一个字符。所有的 ASCII 字符和很多常用的中文字符,都用 2 个字节表示。少数字符需要用到 4 个字节表示。
- UTF-32 编码:每个字符都使用 4 个字节。这意味着 UTF-32 会比 UTF-8 和 UTF-16 更占用空间,特别是对于主要使用 ASCII 字符的文本。
从存储空间的角度看,使用 UTF-8 表示英文字符非常高效,因为它仅需 1 个字节;使用 UTF-16 编码某些非英文字符(例如中文)会更加高效,因为它只需要 2 个字节,而 UTF-8 可能需要 3 个字节。从兼容性的角度看,UTF-8 的通用性最佳,许多工具和库都优先支持 UTF-8 。
如下表所示,为各个编程语言的字符串默认编码方式。由于 UTF-16 和 UTF-32 属于等长的编码方法,因此编程语言可以直接计算字符串的长度,也可以快速地访问字符串中的任意字符。而如果使用 UTF-8 这种变长的编码方法,编程语言往往需要额外维护一个字符数组,才能实现高效的随机访问。
编码 | 编程语言 |
---|---|
UTF-8 | Python, Go, Rust, Swift |
UTF-16 | Java, C#, JavaScript, TypeScript |
UTF-32 | / |