17 KiB
comments |
---|
true |
15.3 最大容量問題
!!! question
輸入一個陣列 $ht$ ,其中的每個元素代表一個垂直隔板的高度。陣列中的任意兩個隔板,以及它們之間的空間可以組成一個容器。
容器的容量等於高度和寬度的乘積(面積),其中高度由較短的隔板決定,寬度是兩個隔板的陣列索引之差。
請在陣列中選擇兩個隔板,使得組成的容器的容量最大,返回最大容量。示例如圖 15-7 所示。
圖 15-7 最大容量問題的示例資料
容器由任意兩個隔板圍成,因此本題的狀態為兩個隔板的索引,記為 $[i, j]$ 。
根據題意,容量等於高度乘以寬度,其中高度由短板決定,寬度是兩隔板的陣列索引之差。設容量為 cap[i, j]
,則可得計算公式:
$$
cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
設陣列長度為 n
,兩個隔板的組合數量(狀態總數)為 C_n^2 = \frac{n(n - 1)}{2}
個。最直接地,我們可以窮舉所有狀態,從而求得最大容量,時間複雜度為 O(n^2)
。
1. 貪婪策略確定
這道題還有更高效率的解法。如圖 15-8 所示,現選取一個狀態 [i, j]
,其滿足索引 i < j
且高度 ht[i] < ht[j]
,即 i
為短板、j
為長板。
圖 15-8 初始狀態
如圖 15-9 所示,若此時將長板 j
向短板 i
靠近,則容量一定變小。
這是因為在移動長板 j
後,寬度 j-i
肯定變小;而高度由短板決定,因此高度只可能不變( i
仍為短板)或變小(移動後的 j
成為短板)。
圖 15-9 向內移動長板後的狀態
反向思考,我們只有向內收縮短板 i
,才有可能使容量變大。因為雖然寬度一定變小,但高度可能會變大(移動後的短板 i
可能會變長)。例如在圖 15-10 中,移動短板後面積變大。
圖 15-10 向內移動短板後的狀態
由此便可推出本題的貪婪策略:初始化兩指標,使其分列容器兩端,每輪向內收縮短板對應的指標,直至兩指標相遇。
圖 15-11 展示了貪婪策略的執行過程。
- 初始狀態下,指標
i
和j
分列陣列兩端。 - 計算當前狀態的容量
cap[i, j]
,並更新最大容量。 - 比較板
i
和 板j
的高度,並將短板向內移動一格。 - 迴圈執行第
2.
步和第3.
步,直至i
和j
相遇時結束。
=== "<1>" { class="animation-figure" }
=== "<2>" { class="animation-figure" }
=== "<3>" { class="animation-figure" }
=== "<4>" { class="animation-figure" }
=== "<5>" { class="animation-figure" }
=== "<6>" { class="animation-figure" }
=== "<7>" { class="animation-figure" }
=== "<8>" { class="animation-figure" }
=== "<9>" { class="animation-figure" }
圖 15-11 最大容量問題的貪婪過程
2. 程式碼實現
程式碼迴圈最多 n
輪,因此時間複雜度為 $O(n)$ 。
變數 $i$、$j$、res
使用常數大小的額外空間,因此空間複雜度為 $O(1)$ 。
=== "Python"
```python title="max_capacity.py"
def max_capacity(ht: list[int]) -> int:
"""最大容量:貪婪"""
# 初始化 i, j,使其分列陣列兩端
i, j = 0, len(ht) - 1
# 初始最大容量為 0
res = 0
# 迴圈貪婪選擇,直至兩板相遇
while i < j:
# 更新最大容量
cap = min(ht[i], ht[j]) * (j - i)
res = max(res, cap)
# 向內移動短板
if ht[i] < ht[j]:
i += 1
else:
j -= 1
return res
```
=== "C++"
```cpp title="max_capacity.cpp"
/* 最大容量:貪婪 */
int maxCapacity(vector<int> &ht) {
// 初始化 i, j,使其分列陣列兩端
int i = 0, j = ht.size() - 1;
// 初始最大容量為 0
int res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
int cap = min(ht[i], ht[j]) * (j - i);
res = max(res, cap);
// 向內移動短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "Java"
```java title="max_capacity.java"
/* 最大容量:貪婪 */
int maxCapacity(int[] ht) {
// 初始化 i, j,使其分列陣列兩端
int i = 0, j = ht.length - 1;
// 初始最大容量為 0
int res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
int cap = Math.min(ht[i], ht[j]) * (j - i);
res = Math.max(res, cap);
// 向內移動短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "C#"
```csharp title="max_capacity.cs"
/* 最大容量:貪婪 */
int MaxCapacity(int[] ht) {
// 初始化 i, j,使其分列陣列兩端
int i = 0, j = ht.Length - 1;
// 初始最大容量為 0
int res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
int cap = Math.Min(ht[i], ht[j]) * (j - i);
res = Math.Max(res, cap);
// 向內移動短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "Go"
```go title="max_capacity.go"
/* 最大容量:貪婪 */
func maxCapacity(ht []int) int {
// 初始化 i, j,使其分列陣列兩端
i, j := 0, len(ht)-1
// 初始最大容量為 0
res := 0
// 迴圈貪婪選擇,直至兩板相遇
for i < j {
// 更新最大容量
capacity := int(math.Min(float64(ht[i]), float64(ht[j]))) * (j - i)
res = int(math.Max(float64(res), float64(capacity)))
// 向內移動短板
if ht[i] < ht[j] {
i++
} else {
j--
}
}
return res
}
```
=== "Swift"
```swift title="max_capacity.swift"
/* 最大容量:貪婪 */
func maxCapacity(ht: [Int]) -> Int {
// 初始化 i, j,使其分列陣列兩端
var i = ht.startIndex, j = ht.endIndex - 1
// 初始最大容量為 0
var res = 0
// 迴圈貪婪選擇,直至兩板相遇
while i < j {
// 更新最大容量
let cap = min(ht[i], ht[j]) * (j - i)
res = max(res, cap)
// 向內移動短板
if ht[i] < ht[j] {
i += 1
} else {
j -= 1
}
}
return res
}
```
=== "JS"
```javascript title="max_capacity.js"
/* 最大容量:貪婪 */
function maxCapacity(ht) {
// 初始化 i, j,使其分列陣列兩端
let i = 0,
j = ht.length - 1;
// 初始最大容量為 0
let res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
const cap = Math.min(ht[i], ht[j]) * (j - i);
res = Math.max(res, cap);
// 向內移動短板
if (ht[i] < ht[j]) {
i += 1;
} else {
j -= 1;
}
}
return res;
}
```
=== "TS"
```typescript title="max_capacity.ts"
/* 最大容量:貪婪 */
function maxCapacity(ht: number[]): number {
// 初始化 i, j,使其分列陣列兩端
let i = 0,
j = ht.length - 1;
// 初始最大容量為 0
let res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
const cap: number = Math.min(ht[i], ht[j]) * (j - i);
res = Math.max(res, cap);
// 向內移動短板
if (ht[i] < ht[j]) {
i += 1;
} else {
j -= 1;
}
}
return res;
}
```
=== "Dart"
```dart title="max_capacity.dart"
/* 最大容量:貪婪 */
int maxCapacity(List<int> ht) {
// 初始化 i, j,使其分列陣列兩端
int i = 0, j = ht.length - 1;
// 初始最大容量為 0
int res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
int cap = min(ht[i], ht[j]) * (j - i);
res = max(res, cap);
// 向內移動短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "Rust"
```rust title="max_capacity.rs"
/* 最大容量:貪婪 */
fn max_capacity(ht: &[i32]) -> i32 {
// 初始化 i, j,使其分列陣列兩端
let mut i = 0;
let mut j = ht.len() - 1;
// 初始最大容量為 0
let mut res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while i < j {
// 更新最大容量
let cap = std::cmp::min(ht[i], ht[j]) * (j - i) as i32;
res = std::cmp::max(res, cap);
// 向內移動短板
if ht[i] < ht[j] {
i += 1;
} else {
j -= 1;
}
}
res
}
```
=== "C"
```c title="max_capacity.c"
/* 最大容量:貪婪 */
int maxCapacity(int ht[], int htLength) {
// 初始化 i, j,使其分列陣列兩端
int i = 0;
int j = htLength - 1;
// 初始最大容量為 0
int res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
int capacity = myMin(ht[i], ht[j]) * (j - i);
res = myMax(res, capacity);
// 向內移動短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "Kotlin"
```kotlin title="max_capacity.kt"
/* 最大容量:貪婪 */
fun maxCapacity(ht: IntArray): Int {
// 初始化 i, j,使其分列陣列兩端
var i = 0
var j = ht.size - 1
// 初始最大容量為 0
var res = 0
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
val cap = (min(ht[i].toDouble(), ht[j].toDouble()) * (j - i)).toInt()
res = max(res.toDouble(), cap.toDouble()).toInt()
// 向內移動短板
if (ht[i] < ht[j]) {
i++
} else {
j--
}
}
return res
}
```
=== "Ruby"
```ruby title="max_capacity.rb"
[class]{}-[func]{max_capacity}
```
=== "Zig"
```zig title="max_capacity.zig"
[class]{}-[func]{maxCapacity}
```
??? pythontutor "視覺化執行"
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20max_capacity%28ht%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%EF%BC%9A%E8%B4%AA%E5%BF%83%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20i,%20j%EF%BC%8C%E4%BD%BF%E5%85%B6%E5%88%86%E5%88%97%E6%95%B0%E7%BB%84%E4%B8%A4%E7%AB%AF%0A%20%20%20%20i,%20j%20%3D%200,%20len%28ht%29%20-%201%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E4%B8%BA%200%0A%20%20%20%20res%20%3D%200%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%E8%B4%AA%E5%BF%83%E9%80%89%E6%8B%A9%EF%BC%8C%E7%9B%B4%E8%87%B3%E4%B8%A4%E6%9D%BF%E7%9B%B8%E9%81%87%0A%20%20%20%20while%20i%20%3C%20j%3A%0A%20%20%20%20%20%20%20%20%23%20%E6%9B%B4%E6%96%B0%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%0A%20%20%20%20%20%20%20%20cap%20%3D%20min%28ht%5Bi%5D,%20ht%5Bj%5D%29%20*%20%28j%20-%20i%29%0A%20%20%20%20%20%20%20%20res%20%3D%20max%28res,%20cap%29%0A%20%20%20%20%20%20%20%20%23%20%E5%90%91%E5%86%85%E7%A7%BB%E5%8A%A8%E7%9F%AD%E6%9D%BF%0A%20%20%20%20%20%20%20%20if%20ht%5Bi%5D%20%3C%20ht%5Bj%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%2B%3D%201%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20-%3D%201%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20ht%20%3D%20%5B3,%208,%205,%202,%207,%207,%203,%204%5D%0A%0A%20%20%20%20%23%20%E8%B4%AA%E5%BF%83%E7%AE%97%E6%B3%95%0A%20%20%20%20res%20%3D%20max_capacity%28ht%29%0A%20%20%20%20print%28f%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20max_capacity%28ht%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%EF%BC%9A%E8%B4%AA%E5%BF%83%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20i,%20j%EF%BC%8C%E4%BD%BF%E5%85%B6%E5%88%86%E5%88%97%E6%95%B0%E7%BB%84%E4%B8%A4%E7%AB%AF%0A%20%20%20%20i,%20j%20%3D%200,%20len%28ht%29%20-%201%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E4%B8%BA%200%0A%20%20%20%20res%20%3D%200%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%E8%B4%AA%E5%BF%83%E9%80%89%E6%8B%A9%EF%BC%8C%E7%9B%B4%E8%87%B3%E4%B8%A4%E6%9D%BF%E7%9B%B8%E9%81%87%0A%20%20%20%20while%20i%20%3C%20j%3A%0A%20%20%20%20%20%20%20%20%23%20%E6%9B%B4%E6%96%B0%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%0A%20%20%20%20%20%20%20%20cap%20%3D%20min%28ht%5Bi%5D,%20ht%5Bj%5D%29%20*%20%28j%20-%20i%29%0A%20%20%20%20%20%20%20%20res%20%3D%20max%28res,%20cap%29%0A%20%20%20%20%20%20%20%20%23%20%E5%90%91%E5%86%85%E7%A7%BB%E5%8A%A8%E7%9F%AD%E6%9D%BF%0A%20%20%20%20%20%20%20%20if%20ht%5Bi%5D%20%3C%20ht%5Bj%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%2B%3D%201%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20-%3D%201%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20ht%20%3D%20%5B3,%208,%205,%202,%207,%207,%203,%204%5D%0A%0A%20%20%20%20%23%20%E8%B4%AA%E5%BF%83%E7%AE%97%E6%B3%95%0A%20%20%20%20res%20%3D%20max_capacity%28ht%29%0A%20%20%20%20print%28f%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
3. 正確性證明
之所以貪婪比窮舉更快,是因為每輪的貪婪選擇都會“跳過”一些狀態。
比如在狀態 cap[i, j]
下,i
為短板、j
為長板。若貪婪地將短板 i
向內移動一格,會導致圖 15-12 所示的狀態被“跳過”。這意味著之後無法驗證這些狀態的容量大小。
$$
cap[i, i+1], cap[i, i+2], \dots, cap[i, j-2], cap[i, j-1]
圖 15-12 移動短板導致被跳過的狀態
觀察發現,這些被跳過的狀態實際上就是將長板 j
向內移動的所有狀態。前面我們已經證明內移長板一定會導致容量變小。也就是說,被跳過的狀態都不可能是最優解,跳過它們不會導致錯過最優解。
以上分析說明,移動短板的操作是“安全”的,貪婪策略是有效的。