hello-algo/docs/chapter_backtracking/permutations_problem.md
2023-10-23 04:56:13 +08:00

960 lines
35 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
comments: true
---
# 13.2   全排列问题
全排列问题是回溯算法的一个典型应用。它的定义是在给定一个集合(如一个数组或字符串)的情况下,找出这个集合中元素的所有可能的排列。
表 13-2 列举了几个示例数据,包括输入数组和对应的所有排列。
<p align="center"> 表 13-2 &nbsp; 全排列示例 </p>
<div class="center-table" markdown>
| 输入数组 | 所有排列 |
| :---------- | :----------------------------------------------------------------- |
| $[1]$ | $[1]$ |
| $[1, 2]$ | $[1, 2], [2, 1]$ |
| $[1, 2, 3]$ | $[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]$ |
</div>
## 13.2.1 &nbsp; 无相等元素的情况
!!! question
输入一个整数数组,数组中不包含重复元素,返回所有可能的排列。
从回溯算法的角度看,**我们可以把生成排列的过程想象成一系列选择的结果**。假设输入数组为 $[1, 2, 3]$ ,如果我们先选择 $1$、再选择 $3$、最后选择 $2$ ,则获得排列 $[1, 3, 2]$ 。回退表示撤销一个选择,之后继续尝试其他选择。
从回溯代码的角度看,候选集合 `choices` 是输入数组中的所有元素,状态 `state` 是直至目前已被选择的元素。请注意,每个元素只允许被选择一次,**因此 `state` 中的所有元素都应该是唯一的**。
如图 13-5 所示,我们可以将搜索过程展开成一个递归树,树中的每个节点代表当前状态 `state` 。从根节点开始,经过三轮选择后到达叶节点,每个叶节点都对应一个排列。
![全排列的递归树](permutations_problem.assets/permutations_i.png)
<p align="center"> 图 13-5 &nbsp; 全排列的递归树 </p>
### 1. &nbsp; 重复选择剪枝
为了实现每个元素只被选择一次,我们考虑引入一个布尔型数组 `selected` ,其中 `selected[i]` 表示 `choices[i]` 是否已被选择,并基于它实现以下剪枝操作。
- 在做出选择 `choice[i]` 后,我们就将 `selected[i]` 赋值为 $\text{True}$ ,代表它已被选择。
- 遍历选择列表 `choices` 时,跳过所有已被选择过的节点,即剪枝。
如图 13-6 所示,假设我们第一轮选择 1 ,第二轮选择 3 ,第三轮选择 2 ,则需要在第二轮剪掉元素 1 的分支,在第三轮剪掉元素 1 和元素 3 的分支。
![全排列剪枝示例](permutations_problem.assets/permutations_i_pruning.png)
<p align="center"> 图 13-6 &nbsp; 全排列剪枝示例 </p>
观察图 13-6 发现,该剪枝操作将搜索空间大小从 $O(n^n)$ 降低至 $O(n!)$ 。
### 2. &nbsp; 代码实现
想清楚以上信息之后,我们就可以在框架代码中做“完形填空”了。为了缩短代码行数,我们不单独实现框架代码中的各个函数,而是将他们展开在 `backtrack()` 函数中。
=== "Python"
```python title="permutations_i.py"
def backtrack(
state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
):
"""回溯算法:全排列 I"""
# 当状态长度等于元素数量时,记录解
if len(state) == len(choices):
res.append(list(state))
return
# 遍历所有选择
for i, choice in enumerate(choices):
# 剪枝:不允许重复选择元素
if not selected[i]:
# 尝试:做出选择,更新状态
selected[i] = True
state.append(choice)
# 进行下一轮选择
backtrack(state, choices, selected, res)
# 回退:撤销选择,恢复到之前的状态
selected[i] = False
state.pop()
def permutations_i(nums: list[int]) -> list[list[int]]:
"""全排列 I"""
res = []
backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
return res
```
=== "C++"
```cpp title="permutations_i.cpp"
/* 回溯算法:全排列 I */
void backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {
// 当状态长度等于元素数量时,记录解
if (state.size() == choices.size()) {
res.push_back(state);
return;
}
// 遍历所有选择
for (int i = 0; i < choices.size(); i++) {
int choice = choices[i];
// 剪枝不允许重复选择元素
if (!selected[i]) {
// 尝试做出选择更新状态
selected[i] = true;
state.push_back(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退撤销选择恢复到之前的状态
selected[i] = false;
state.pop_back();
}
}
}
/* 全排列 I */
vector<vector<int>> permutationsI(vector<int> nums) {
vector<int> state;
vector<bool> selected(nums.size(), false);
vector<vector<int>> res;
backtrack(state, nums, selected, res);
return res;
}
```
=== "Java"
```java title="permutations_i.java"
/* 回溯算法:全排列 I */
void backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {
// 当状态长度等于元素数量时,记录解
if (state.size() == choices.length) {
res.add(new ArrayList<Integer>(state));
return;
}
// 遍历所有选择
for (int i = 0; i < choices.length; i++) {
int choice = choices[i];
// 剪枝不允许重复选择元素
if (!selected[i]) {
// 尝试做出选择更新状态
selected[i] = true;
state.add(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退撤销选择恢复到之前的状态
selected[i] = false;
state.remove(state.size() - 1);
}
}
}
/* 全排列 I */
List<List<Integer>> permutationsI(int[] nums) {
List<List<Integer>> res = new ArrayList<List<Integer>>();
backtrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);
return res;
}
```
=== "C#"
```csharp title="permutations_i.cs"
/* 回溯算法:全排列 I */
void Backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {
// 当状态长度等于元素数量时,记录解
if (state.Count == choices.Length) {
res.Add(new List<int>(state));
return;
}
// 遍历所有选择
for (int i = 0; i < choices.Length; i++) {
int choice = choices[i];
// 剪枝不允许重复选择元素
if (!selected[i]) {
// 尝试做出选择更新状态
selected[i] = true;
state.Add(choice);
// 进行下一轮选择
Backtrack(state, choices, selected, res);
// 回退撤销选择恢复到之前的状态
selected[i] = false;
state.RemoveAt(state.Count - 1);
}
}
}
/* 全排列 I */
List<List<int>> PermutationsI(int[] nums) {
List<List<int>> res = new();
Backtrack(new List<int>(), nums, new bool[nums.Length], res);
return res;
}
```
=== "Go"
```go title="permutations_i.go"
/* 回溯算法:全排列 I */
func backtrackI(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {
// 当状态长度等于元素数量时,记录解
if len(*state) == len(*choices) {
newState := append([]int{}, *state...)
*res = append(*res, newState)
}
// 遍历所有选择
for i := 0; i < len(*choices); i++ {
choice := (*choices)[i]
// 剪枝不允许重复选择元素
if !(*selected)[i] {
// 尝试做出选择更新状态
(*selected)[i] = true
*state = append(*state, choice)
// 进行下一轮选择
backtrackI(state, choices, selected, res)
// 回退撤销选择恢复到之前的状态
(*selected)[i] = false
*state = (*state)[:len(*state)-1]
}
}
}
/* 全排列 I */
func permutationsI(nums []int) [][]int {
res := make([][]int, 0)
state := make([]int, 0)
selected := make([]bool, len(nums))
backtrackI(&state, &nums, &selected, &res)
return res
}
```
=== "Swift"
```swift title="permutations_i.swift"
/* 回溯算法全排列 I */
func backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {
// 当状态长度等于元素数量时记录解
if state.count == choices.count {
res.append(state)
return
}
// 遍历所有选择
for (i, choice) in choices.enumerated() {
// 剪枝不允许重复选择元素
if !selected[i] {
// 尝试做出选择更新状态
selected[i] = true
state.append(choice)
// 进行下一轮选择
backtrack(state: &state, choices: choices, selected: &selected, res: &res)
// 回退撤销选择恢复到之前的状态
selected[i] = false
state.removeLast()
}
}
}
/* 全排列 I */
func permutationsI(nums: [Int]) -> [[Int]] {
var state: [Int] = []
var selected = Array(repeating: false, count: nums.count)
var res: [[Int]] = []
backtrack(state: &state, choices: nums, selected: &selected, res: &res)
return res
}
```
=== "JS"
```javascript title="permutations_i.js"
/* 回溯算法:全排列 I */
function backtrack(state, choices, selected, res) {
// 当状态长度等于元素数量时,记录解
if (state.length === choices.length) {
res.push([...state]);
return;
}
// 遍历所有选择
choices.forEach((choice, i) => {
// 剪枝:不允许重复选择元素
if (!selected[i]) {
// 尝试:做出选择,更新状态
selected[i] = true;
state.push(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退:撤销选择,恢复到之前的状态
selected[i] = false;
state.pop();
}
});
}
/* 全排列 I */
function permutationsI(nums) {
const res = [];
backtrack([], nums, Array(nums.length).fill(false), res);
return res;
}
```
=== "TS"
```typescript title="permutations_i.ts"
/* 回溯算法:全排列 I */
function backtrack(
state: number[],
choices: number[],
selected: boolean[],
res: number[][]
): void {
// 当状态长度等于元素数量时,记录解
if (state.length === choices.length) {
res.push([...state]);
return;
}
// 遍历所有选择
choices.forEach((choice, i) => {
// 剪枝:不允许重复选择元素
if (!selected[i]) {
// 尝试:做出选择,更新状态
selected[i] = true;
state.push(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退:撤销选择,恢复到之前的状态
selected[i] = false;
state.pop();
}
});
}
/* 全排列 I */
function permutationsI(nums: number[]): number[][] {
const res: number[][] = [];
backtrack([], nums, Array(nums.length).fill(false), res);
return res;
}
```
=== "Dart"
```dart title="permutations_i.dart"
/* 回溯算法:全排列 I */
void backtrack(
List<int> state,
List<int> choices,
List<bool> selected,
List<List<int>> res,
) {
// 当状态长度等于元素数量时,记录解
if (state.length == choices.length) {
res.add(List.from(state));
return;
}
// 遍历所有选择
for (int i = 0; i < choices.length; i++) {
int choice = choices[i];
// 剪枝不允许重复选择元素
if (!selected[i]) {
// 尝试做出选择更新状态
selected[i] = true;
state.add(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退撤销选择恢复到之前的状态
selected[i] = false;
state.removeLast();
}
}
}
/* 全排列 I */
List<List<int>> permutationsI(List<int> nums) {
List<List<int>> res = [];
backtrack([], nums, List.filled(nums.length, false), res);
return res;
}
```
=== "Rust"
```rust title="permutations_i.rs"
/* 回溯算法:全排列 I */
fn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {
// 当状态长度等于元素数量时,记录解
if state.len() == choices.len() {
res.push(state);
return;
}
// 遍历所有选择
for i in 0..choices.len() {
let choice = choices[i];
// 剪枝:不允许重复选择元素
if !selected[i] {
// 尝试:做出选择,更新状态
selected[i] = true;
state.push(choice);
// 进行下一轮选择
backtrack(state.clone(), choices, selected, res);
// 回退:撤销选择,恢复到之前的状态
selected[i] = false;
state.remove(state.len() - 1);
}
}
}
/* 全排列 I */
fn permutations_i(nums: &mut [i32]) -> Vec<Vec<i32>> {
let mut res = Vec::new(); // 状态(子集)
backtrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);
res
}
```
=== "C"
```c title="permutations_i.c"
/* 回溯算法:全排列 I */
void backtrack(int *state, int stateSize, int *choices, int choicesSize, bool *selected, int **res, int *resSize) {
// 当状态长度等于元素数量时,记录解
if (stateSize == choicesSize) {
res[*resSize] = (int *)malloc(choicesSize * sizeof(int));
for (int i = 0; i < choicesSize; i++) {
res[*resSize][i] = state[i];
}
(*resSize)++;
return;
}
// 遍历所有选择
for (int i = 0; i < choicesSize; i++) {
int choice = choices[i];
// 剪枝不允许重复选择元素
if (!selected[i]) {
// 尝试做出选择更新状态
selected[i] = true;
state[stateSize] = choice;
// 进行下一轮选择
backtrack(state, stateSize + 1, choices, choicesSize, selected, res, resSize);
// 回退撤销选择恢复到之前的状态
selected[i] = false;
}
}
}
/* 全排列 I */
int **permutationsI(int *nums, int numsSize, int *returnSize) {
int *state = (int *)malloc(numsSize * sizeof(int));
bool *selected = (bool *)malloc(numsSize * sizeof(bool));
for (int i = 0; i < numsSize; i++) {
selected[i] = false;
}
int **res = (int **)malloc(MAX_SIZE * sizeof(int *));
*returnSize = 0;
backtrack(state, 0, nums, numsSize, selected, res, returnSize);
free(state);
free(selected);
return res;
}
```
=== "Zig"
```zig title="permutations_i.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{permutationsI}
```
## 13.2.2 &nbsp; 考虑相等元素的情况
!!! question
输入一个整数数组**数组中可能包含重复元素**返回所有不重复的排列
假设输入数组为 $[1, 1, 2]$ 为了方便区分两个重复元素 $1$ 我们将第二个 $1$ 记为 $\hat{1}$
如图 13-7 所示上述方法生成的排列有一半都是重复的
![重复排列](permutations_problem.assets/permutations_ii.png)
<p align="center"> 图 13-7 &nbsp; 重复排列 </p>
那么如何去除重复的排列呢?最直接地,考虑借助一个哈希表,直接对排列结果进行去重。然而这样做不够优雅,**因为生成重复排列的搜索分支是没有必要的,应当被提前识别并剪枝**,这样可以进一步提升算法效率。
### 1. &nbsp; 相等元素剪枝
观察图 13-8 ,在第一轮中,选择 $1$ 或选择 $\hat{1}$ 是等价的,在这两个选择之下生成的所有排列都是重复的。因此应该把 $\hat{1}$ 剪枝掉。
同理,在第一轮选择 $2$ 之后,第二轮选择中的 $1$ 和 $\hat{1}$ 也会产生重复分支,因此也应将第二轮的 $\hat{1}$ 剪枝。
本质上看,**我们的目标是在某一轮选择中,保证多个相等的元素仅被选择一次**。
![重复排列剪枝](permutations_problem.assets/permutations_ii_pruning.png)
<p align="center"> 图 13-8 &nbsp; 重复排列剪枝 </p>
### 2. &nbsp; 代码实现
在上一题的代码的基础上,我们考虑在每一轮选择中开启一个哈希表 `duplicated` ,用于记录该轮中已经尝试过的元素,并将重复元素剪枝。
=== "Python"
```python title="permutations_ii.py"
def backtrack(
state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
):
"""回溯算法:全排列 II"""
# 当状态长度等于元素数量时,记录解
if len(state) == len(choices):
res.append(list(state))
return
# 遍历所有选择
duplicated = set[int]()
for i, choice in enumerate(choices):
# 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
if not selected[i] and choice not in duplicated:
# 尝试:做出选择,更新状态
duplicated.add(choice) # 记录选择过的元素值
selected[i] = True
state.append(choice)
# 进行下一轮选择
backtrack(state, choices, selected, res)
# 回退:撤销选择,恢复到之前的状态
selected[i] = False
state.pop()
def permutations_ii(nums: list[int]) -> list[list[int]]:
"""全排列 II"""
res = []
backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
return res
```
=== "C++"
```cpp title="permutations_ii.cpp"
/* 回溯算法:全排列 II */
void backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {
// 当状态长度等于元素数量时,记录解
if (state.size() == choices.size()) {
res.push_back(state);
return;
}
// 遍历所有选择
unordered_set<int> duplicated;
for (int i = 0; i < choices.size(); i++) {
int choice = choices[i];
// 剪枝不允许重复选择元素 不允许重复选择相等元素
if (!selected[i] && duplicated.find(choice) == duplicated.end()) {
// 尝试做出选择更新状态
duplicated.emplace(choice); // 记录选择过的元素值
selected[i] = true;
state.push_back(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退撤销选择恢复到之前的状态
selected[i] = false;
state.pop_back();
}
}
}
/* 全排列 II */
vector<vector<int>> permutationsII(vector<int> nums) {
vector<int> state;
vector<bool> selected(nums.size(), false);
vector<vector<int>> res;
backtrack(state, nums, selected, res);
return res;
}
```
=== "Java"
```java title="permutations_ii.java"
/* 回溯算法:全排列 II */
void backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {
// 当状态长度等于元素数量时,记录解
if (state.size() == choices.length) {
res.add(new ArrayList<Integer>(state));
return;
}
// 遍历所有选择
Set<Integer> duplicated = new HashSet<Integer>();
for (int i = 0; i < choices.length; i++) {
int choice = choices[i];
// 剪枝不允许重复选择元素 不允许重复选择相等元素
if (!selected[i] && !duplicated.contains(choice)) {
// 尝试做出选择更新状态
duplicated.add(choice); // 记录选择过的元素值
selected[i] = true;
state.add(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退撤销选择恢复到之前的状态
selected[i] = false;
state.remove(state.size() - 1);
}
}
}
/* 全排列 II */
List<List<Integer>> permutationsII(int[] nums) {
List<List<Integer>> res = new ArrayList<List<Integer>>();
backtrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);
return res;
}
```
=== "C#"
```csharp title="permutations_ii.cs"
/* 回溯算法:全排列 II */
void Backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {
// 当状态长度等于元素数量时,记录解
if (state.Count == choices.Length) {
res.Add(new List<int>(state));
return;
}
// 遍历所有选择
ISet<int> duplicated = new HashSet<int>();
for (int i = 0; i < choices.Length; i++) {
int choice = choices[i];
// 剪枝不允许重复选择元素 不允许重复选择相等元素
if (!selected[i] && !duplicated.Contains(choice)) {
// 尝试做出选择更新状态
duplicated.Add(choice); // 记录选择过的元素值
selected[i] = true;
state.Add(choice);
// 进行下一轮选择
Backtrack(state, choices, selected, res);
// 回退撤销选择恢复到之前的状态
selected[i] = false;
state.RemoveAt(state.Count - 1);
}
}
}
/* 全排列 II */
List<List<int>> PermutationsII(int[] nums) {
List<List<int>> res = new();
Backtrack(new List<int>(), nums, new bool[nums.Length], res);
return res;
}
```
=== "Go"
```go title="permutations_ii.go"
/* 回溯算法:全排列 II */
func backtrackII(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {
// 当状态长度等于元素数量时,记录解
if len(*state) == len(*choices) {
newState := append([]int{}, *state...)
*res = append(*res, newState)
}
// 遍历所有选择
duplicated := make(map[int]struct{}, 0)
for i := 0; i < len(*choices); i++ {
choice := (*choices)[i]
// 剪枝不允许重复选择元素 不允许重复选择相等元素
if _, ok := duplicated[choice]; !ok && !(*selected)[i] {
// 尝试做出选择更新状态
// 记录选择过的元素值
duplicated[choice] = struct{}{}
(*selected)[i] = true
*state = append(*state, choice)
// 进行下一轮选择
backtrackI(state, choices, selected, res)
// 回退撤销选择恢复到之前的状态
(*selected)[i] = false
*state = (*state)[:len(*state)-1]
}
}
}
/* 全排列 II */
func permutationsII(nums []int) [][]int {
res := make([][]int, 0)
state := make([]int, 0)
selected := make([]bool, len(nums))
backtrackII(&state, &nums, &selected, &res)
return res
}
```
=== "Swift"
```swift title="permutations_ii.swift"
/* 回溯算法全排列 II */
func backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {
// 当状态长度等于元素数量时记录解
if state.count == choices.count {
res.append(state)
return
}
// 遍历所有选择
var duplicated: Set<Int> = []
for (i, choice) in choices.enumerated() {
// 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
if !selected[i], !duplicated.contains(choice) {
// 尝试:做出选择,更新状态
duplicated.insert(choice) // 记录选择过的元素值
selected[i] = true
state.append(choice)
// 进行下一轮选择
backtrack(state: &state, choices: choices, selected: &selected, res: &res)
// 回退:撤销选择,恢复到之前的状态
selected[i] = false
state.removeLast()
}
}
}
/* 全排列 II */
func permutationsII(nums: [Int]) -> [[Int]] {
var state: [Int] = []
var selected = Array(repeating: false, count: nums.count)
var res: [[Int]] = []
backtrack(state: &state, choices: nums, selected: &selected, res: &res)
return res
}
```
=== "JS"
```javascript title="permutations_ii.js"
/* 回溯算法:全排列 II */
function backtrack(state, choices, selected, res) {
// 当状态长度等于元素数量时,记录解
if (state.length === choices.length) {
res.push([...state]);
return;
}
// 遍历所有选择
const duplicated = new Set();
choices.forEach((choice, i) => {
// 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
if (!selected[i] && !duplicated.has(choice)) {
// 尝试:做出选择,更新状态
duplicated.add(choice); // 记录选择过的元素值
selected[i] = true;
state.push(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退:撤销选择,恢复到之前的状态
selected[i] = false;
state.pop();
}
});
}
/* 全排列 II */
function permutationsII(nums) {
const res = [];
backtrack([], nums, Array(nums.length).fill(false), res);
return res;
}
```
=== "TS"
```typescript title="permutations_ii.ts"
/* 回溯算法:全排列 II */
function backtrack(
state: number[],
choices: number[],
selected: boolean[],
res: number[][]
): void {
// 当状态长度等于元素数量时,记录解
if (state.length === choices.length) {
res.push([...state]);
return;
}
// 遍历所有选择
const duplicated = new Set();
choices.forEach((choice, i) => {
// 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
if (!selected[i] && !duplicated.has(choice)) {
// 尝试:做出选择,更新状态
duplicated.add(choice); // 记录选择过的元素值
selected[i] = true;
state.push(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退:撤销选择,恢复到之前的状态
selected[i] = false;
state.pop();
}
});
}
/* 全排列 II */
function permutationsII(nums: number[]): number[][] {
const res: number[][] = [];
backtrack([], nums, Array(nums.length).fill(false), res);
return res;
}
```
=== "Dart"
```dart title="permutations_ii.dart"
/* 回溯算法:全排列 II */
void backtrack(
List<int> state,
List<int> choices,
List<bool> selected,
List<List<int>> res,
) {
// 当状态长度等于元素数量时,记录解
if (state.length == choices.length) {
res.add(List.from(state));
return;
}
// 遍历所有选择
Set<int> duplicated = {};
for (int i = 0; i < choices.length; i++) {
int choice = choices[i];
// 剪枝不允许重复选择元素 不允许重复选择相等元素
if (!selected[i] && !duplicated.contains(choice)) {
// 尝试做出选择更新状态
duplicated.add(choice); // 记录选择过的元素值
selected[i] = true;
state.add(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退撤销选择恢复到之前的状态
selected[i] = false;
state.removeLast();
}
}
}
/* 全排列 II */
List<List<int>> permutationsII(List<int> nums) {
List<List<int>> res = [];
backtrack([], nums, List.filled(nums.length, false), res);
return res;
}
```
=== "Rust"
```rust title="permutations_ii.rs"
/* 回溯算法:全排列 II */
fn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {
// 当状态长度等于元素数量时,记录解
if state.len() == choices.len() {
res.push(state);
return;
}
// 遍历所有选择
let mut duplicated = HashSet::<i32>::new();
for i in 0..choices.len() {
let choice = choices[i];
// 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
if !selected[i] && !duplicated.contains(&choice) {
// 尝试:做出选择,更新状态
duplicated.insert(choice); // 记录选择过的元素值
selected[i] = true;
state.push(choice);
// 进行下一轮选择
backtrack(state.clone(), choices, selected, res);
// 回退:撤销选择,恢复到之前的状态
selected[i] = false;
state.remove(state.len() - 1);
}
}
}
/* 全排列 II */
fn permutations_ii(nums: &mut [i32]) -> Vec<Vec<i32>> {
let mut res = Vec::new();
backtrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);
res
}
```
=== "C"
```c title="permutations_ii.c"
/* 回溯算法:全排列 II */
void backtrack(int *state, int stateSize, int *choices, int choicesSize, bool *selected, int **res, int *resSize) {
// 当状态长度等于元素数量时,记录解
if (stateSize == choicesSize) {
res[*resSize] = (int *)malloc(choicesSize * sizeof(int));
for (int i = 0; i < choicesSize; i++) {
res[*resSize][i] = state[i];
}
(*resSize)++;
return;
}
// 遍历所有选择
bool duplicated[MAX_SIZE] = {false};
for (int i = 0; i < choicesSize; i++) {
int choice = choices[i];
// 剪枝不允许重复选择元素 不允许重复选择相等元素
if (!selected[i] && !duplicated[choice]) {
// 尝试做出选择更新状态
duplicated[choice] = true; // 记录选择过的元素值
selected[i] = true;
state[stateSize] = choice;
// 进行下一轮选择
backtrack(state, stateSize + 1, choices, choicesSize, selected, res, resSize);
// 回退撤销选择恢复到之前的状态
selected[i] = false;
}
}
}
/* 全排列 II */
int **permutationsII(int *nums, int numsSize, int *returnSize) {
int *state = (int *)malloc(numsSize * sizeof(int));
bool *selected = (bool *)malloc(numsSize * sizeof(bool));
for (int i = 0; i < numsSize; i++) {
selected[i] = false;
}
int **res = (int **)malloc(MAX_SIZE * sizeof(int *));
*returnSize = 0;
backtrack(state, 0, nums, numsSize, selected, res, returnSize);
free(state);
free(selected);
return res;
}
```
=== "Zig"
```zig title="permutations_ii.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{permutationsII}
```
假设元素两两之间互不相同 $n$ 个元素共有 $n!$ 种排列阶乘在记录结果时需要复制长度为 $n$ 的列表使用 $O(n)$ 时间。**因此时间复杂度为 $O(n!n)$**
最大递归深度为 $n$ 使用 $O(n)$ 栈帧空间。`selected` 使用 $O(n)$ 空间同一时刻最多共有 $n$ `duplicated` 使用 $O(n^2)$ 空间。**因此空间复杂度为 $O(n^2)$**
### 3. &nbsp; 两种剪枝对比
请注意虽然 `selected` `duplicated` 都用作剪枝但两者的目标是不同的
- **重复选择剪枝**整个搜索过程中只有一个 `selected` 它记录的是当前状态中包含哪些元素作用是防止 `choices` 中的任一元素在 `state` 中重复出现
- **相等元素剪枝**每轮选择即每个调用的 `backtrack` 函数都包含一个 `duplicated` 它记录的是在本轮遍历 `for` 循环中哪些元素已被选择过作用是保证相等的元素只被选择一次
13-9 展示了两个剪枝条件的生效范围注意树中的每个节点代表一个选择从根节点到叶节点的路径上的各个节点构成一个排列
![两种剪枝条件的作用范围](permutations_problem.assets/permutations_ii_pruning_summary.png)
<p align="center"> 图 13-9 &nbsp; 两种剪枝条件的作用范围 </p>