46 KiB
Executable file
comments |
---|
true |
5.2. 队列
「队列 Queue」是一种遵循「先入先出 first in, first out」数据操作规则的线性数据结构。顾名思义,队列模拟的是排队现象,即外面的人不断加入队列尾部,而处于队列头部的人不断地离开。
我们将队列头部称为「队首」,队列尾部称为「队尾」,将把元素加入队尾的操作称为「入队」,删除队首元素的操作称为「出队」。
Fig. 队列的先入先出规则
5.2.1. 队列常用操作
队列的常用操作见下表。需要注意,不同编程语言的方法名是不同的,在这里我们采用与栈相同的方法命名。
方法名 | 描述 | 时间复杂度 |
---|---|---|
push() | 元素入队,即将元素添加至队尾 | O(1) |
pop() | 队首元素出队 | O(1) |
peek() | 访问队首元素 | O(1) |
我们可以直接使用编程语言实现好的队列类。
=== "Java"
```java title="queue.java"
/* 初始化队列 */
Queue<Integer> queue = new LinkedList<>();
/* 元素入队 */
queue.offer(1);
queue.offer(3);
queue.offer(2);
queue.offer(5);
queue.offer(4);
/* 访问队首元素 */
int peek = queue.peek();
/* 元素出队 */
int pop = queue.poll();
/* 获取队列的长度 */
int size = queue.size();
/* 判断队列是否为空 */
boolean isEmpty = queue.isEmpty();
```
=== "C++"
```cpp title="queue.cpp"
/* 初始化队列 */
queue<int> queue;
/* 元素入队 */
queue.push(1);
queue.push(3);
queue.push(2);
queue.push(5);
queue.push(4);
/* 访问队首元素 */
int front = queue.front();
/* 元素出队 */
queue.pop();
/* 获取队列的长度 */
int size = queue.size();
/* 判断队列是否为空 */
bool empty = queue.empty();
```
=== "Python"
```python title="queue.py"
""" 初始化队列 """
# 在 Python 中,我们一般将双向队列类 deque 看作队列使用
# 虽然 queue.Queue() 是纯正的队列类,但不太好用,因此不建议
que: Deque[int] = collections.deque()
""" 元素入队 """
que.append(1)
que.append(3)
que.append(2)
que.append(5)
que.append(4)
""" 访问队首元素 """
front: int = que[0];
""" 元素出队 """
pop: int = que.popleft()
""" 获取队列的长度 """
size: int = len(que)
""" 判断队列是否为空 """
is_empty: bool = len(que) == 0
```
=== "Go"
```go title="queue_test.go"
/* 初始化队列 */
// 在 Go 中,将 list 作为队列来使用
queue := list.New()
/* 元素入队 */
queue.PushBack(1)
queue.PushBack(3)
queue.PushBack(2)
queue.PushBack(5)
queue.PushBack(4)
/* 访问队首元素 */
peek := queue.Front()
/* 元素出队 */
pop := queue.Front()
queue.Remove(pop)
/* 获取队列的长度 */
size := queue.Len()
/* 判断队列是否为空 */
isEmpty := queue.Len() == 0
```
=== "JavaScript"
```javascript title="queue.js"
/* 初始化队列 */
// JavaScript 没有内置的队列,可以把 Array 当作队列来使用
const queue = [];
/* 元素入队 */
queue.push(1);
queue.push(3);
queue.push(2);
queue.push(5);
queue.push(4);
/* 访问队首元素 */
const peek = queue[0];
/* 元素出队 */
// 底层是数组,因此 shift() 方法的时间复杂度为 O(n)
const pop = queue.shift();
/* 获取队列的长度 */
const size = queue.length;
/* 判断队列是否为空 */
const empty = queue.length === 0;
```
=== "TypeScript"
```typescript title="queue.ts"
/* 初始化队列 */
// TypeScript 没有内置的队列,可以把 Array 当作队列来使用
const queue: number[] = [];
/* 元素入队 */
queue.push(1);
queue.push(3);
queue.push(2);
queue.push(5);
queue.push(4);
/* 访问队首元素 */
const peek = queue[0];
/* 元素出队 */
// 底层是数组,因此 shift() 方法的时间复杂度为 O(n)
const pop = queue.shift();
/* 获取队列的长度 */
const size = queue.length;
/* 判断队列是否为空 */
const empty = queue.length === 0;
```
=== "C"
```c title="queue.c"
```
=== "C#"
```csharp title="queue.cs"
/* 初始化队列 */
Queue<int> queue = new();
/* 元素入队 */
queue.Enqueue(1);
queue.Enqueue(3);
queue.Enqueue(2);
queue.Enqueue(5);
queue.Enqueue(4);
/* 访问队首元素 */
int peek = queue.Peek();
/* 元素出队 */
int pop = queue.Dequeue();
/* 获取队列的长度 */
int size = queue.Count();
/* 判断队列是否为空 */
bool isEmpty = queue.Count() == 0;
```
=== "Swift"
```swift title="queue.swift"
/* 初始化队列 */
// Swift 没有内置的队列类,可以把 Array 当作队列来使用
var queue: [Int] = []
/* 元素入队 */
queue.append(1)
queue.append(3)
queue.append(2)
queue.append(5)
queue.append(4)
/* 访问队首元素 */
let peek = queue.first!
/* 元素出队 */
// 由于是数组,因此 removeFirst 的复杂度为 O(n)
let pool = queue.removeFirst()
/* 获取队列的长度 */
let size = queue.count
/* 判断队列是否为空 */
let isEmpty = queue.isEmpty
```
=== "Zig"
```zig title="queue.zig"
```
5.2.2. 队列实现
队列需要一种可以在一端添加,并在另一端删除的数据结构,也可以使用链表或数组来实现。
基于链表的实现
我们将链表的「头结点」和「尾结点」分别看作是队首和队尾,并规定队尾只可添加结点,队首只可删除结点。
以下是使用链表实现队列的示例代码。
=== "Java"
```java title="linkedlist_queue.java"
/* 基于链表实现的队列 */
class LinkedListQueue {
private ListNode front, rear; // 头结点 front ,尾结点 rear
private int queSize = 0;
public LinkedListQueue() {
front = null;
rear = null;
}
/* 获取队列的长度 */
public int size() {
return queSize;
}
/* 判断队列是否为空 */
public boolean isEmpty() {
return size() == 0;
}
/* 入队 */
public void push(int num) {
// 尾结点后添加 num
ListNode node = new ListNode(num);
// 如果队列为空,则令头、尾结点都指向该结点
if (front == null) {
front = node;
rear = node;
// 如果队列不为空,则将该结点添加到尾结点后
} else {
rear.next = node;
rear = node;
}
queSize++;
}
/* 出队 */
public int pop() {
int num = peek();
// 删除头结点
front = front.next;
queSize--;
return num;
}
/* 访问队首元素 */
public int peek() {
if (size() == 0)
throw new EmptyStackException();
return front.val;
}
/* 将链表转化为 Array 并返回 */
public int[] toArray() {
ListNode node = front;
int[] res = new int[size()];
for (int i = 0; i < res.length; i++) {
res[i] = node.val;
node = node.next;
}
return res;
}
}
```
=== "C++"
```cpp title="linkedlist_queue.cpp"
/* 基于链表实现的队列 */
class LinkedListQueue {
private:
ListNode *front, *rear; // 头结点 front ,尾结点 rear
int queSize;
public:
LinkedListQueue() {
front = nullptr;
rear = nullptr;
queSize = 0;
}
~LinkedListQueue() {
// 遍历链表删除结点,释放内存
freeMemoryLinkedList(front);
}
/* 获取队列的长度 */
int size() {
return queSize;
}
/* 判断队列是否为空 */
bool empty() {
return queSize == 0;
}
/* 入队 */
void push(int num) {
// 尾结点后添加 num
ListNode* node = new ListNode(num);
// 如果队列为空,则令头、尾结点都指向该结点
if (front == nullptr) {
front = node;
rear = node;
}
// 如果队列不为空,则将该结点添加到尾结点后
else {
rear->next = node;
rear = node;
}
queSize++;
}
/* 出队 */
void pop() {
int num = peek();
// 删除头结点
ListNode *tmp = front;
front = front->next;
// 释放内存
delete tmp;
queSize--;
}
/* 访问队首元素 */
int peek() {
if (size() == 0)
throw out_of_range("队列为空");
return front->val;
}
/* 将链表转化为 Vector 并返回 */
vector<int> toVector() {
ListNode* node = front;
vector<int> res(size());
for (int i = 0; i < res.size(); i++) {
res[i] = node->val;
node = node->next;
}
return res;
}
};
```
=== "Python"
```python title="linkedlist_queue.py"
class LinkedListQueue:
""" 基于链表实现的队列 """
def __init__(self):
""" 构造方法 """
self.__front: Optional[ListNode] = None # 头结点 front
self.__rear: Optional[ListNode] = None # 尾结点 rear
self.__size: int = 0
def size(self) -> int:
""" 获取队列的长度 """
return self.__size
def is_empty(self) -> bool:
""" 判断队列是否为空 """
return not self.__front
def push(self, num: int) -> None:
""" 入队 """
# 尾结点后添加 num
node = ListNode(num)
# 如果队列为空,则令头、尾结点都指向该结点
if self.__front is None:
self.__front = node
self.__rear = node
# 如果队列不为空,则将该结点添加到尾结点后
else:
self.__rear.next = node
self.__rear = node
self.__size += 1
def pop(self) -> int:
""" 出队 """
num = self.peek()
# 删除头结点
self.__front = self.__front.next
self.__size -= 1
return num
def peek(self) -> int:
""" 访问队首元素 """
if self.size() == 0:
print("队列为空")
return False
return self.__front.val
def to_list(self) -> List[int]:
""" 转化为列表用于打印 """
queue = []
temp = self.__front
while temp:
queue.append(temp.val)
temp = temp.next
return queue
```
=== "Go"
```go title="linkedlist_queue.go"
/* 基于链表实现的队列 */
type linkedListQueue struct {
// 使用内置包 list 来实现队列
data *list.List
}
/* 初始化队列 */
func newLinkedListQueue() *linkedListQueue {
return &linkedListQueue{
data: list.New(),
}
}
/* 入队 */
func (s *linkedListQueue) push(value any) {
s.data.PushBack(value)
}
/* 出队 */
func (s *linkedListQueue) pop() any {
if s.isEmpty() {
return nil
}
e := s.data.Front()
s.data.Remove(e)
return e.Value
}
/* 访问队首元素 */
func (s *linkedListQueue) peek() any {
if s.isEmpty() {
return nil
}
e := s.data.Front()
return e.Value
}
/* 获取队列的长度 */
func (s *linkedListQueue) size() int {
return s.data.Len()
}
/* 判断队列是否为空 */
func (s *linkedListQueue) isEmpty() bool {
return s.data.Len() == 0
}
/* 获取 List 用于打印 */
func (s *linkedListQueue) toList() *list.List {
return s.data
}
```
=== "JavaScript"
```javascript title="linkedlist_queue.js"
/* 基于链表实现的队列 */
class LinkedListQueue {
#front; // 头结点 #front
#rear; // 尾结点 #rear
#queSize = 0;
constructor() {
this.#front = null;
this.#rear = null;
}
/* 获取队列的长度 */
get size() {
return this.#queSize;
}
/* 判断队列是否为空 */
isEmpty() {
return this.size === 0;
}
/* 入队 */
push(num) {
// 尾结点后添加 num
const node = new ListNode(num);
// 如果队列为空,则令头、尾结点都指向该结点
if (!this.#front) {
this.#front = node;
this.#rear = node;
// 如果队列不为空,则将该结点添加到尾结点后
} else {
this.#rear.next = node;
this.#rear = node;
}
this.#queSize++;
}
/* 出队 */
pop() {
const num = this.peek();
// 删除头结点
this.#front = this.#front.next;
this.#queSize--;
return num;
}
/* 访问队首元素 */
peek() {
if (this.size === 0)
throw new Error("队列为空");
return this.#front.val;
}
/* 将链表转化为 Array 并返回 */
toArray() {
let node = this.#front;
const res = new Array(this.size);
for (let i = 0; i < res.length; i++) {
res[i] = node.val;
node = node.next;
}
return res;
}
}
```
=== "TypeScript"
```typescript title="linkedlist_queue.ts"
/* 基于链表实现的队列 */
class LinkedListQueue {
private front: ListNode | null; // 头结点 front
private rear: ListNode | null; // 尾结点 rear
private queSize: number = 0;
constructor() {
this.front = null;
this.rear = null;
}
/* 获取队列的长度 */
get size(): number {
return this.queSize;
}
/* 判断队列是否为空 */
isEmpty(): boolean {
return this.size === 0;
}
/* 入队 */
push(num: number): void {
// 尾结点后添加 num
const node = new ListNode(num);
// 如果队列为空,则令头、尾结点都指向该结点
if (!this.front) {
this.front = node;
this.rear = node;
// 如果队列不为空,则将该结点添加到尾结点后
} else {
this.rear!.next = node;
this.rear = node;
}
this.queSize++;
}
/* 出队 */
pop(): number {
const num = this.peek();
if (!this.front) throw new Error('队列为空');
// 删除头结点
this.front = this.front.next;
this.queSize--;
return num;
}
/* 访问队首元素 */
peek(): number {
if (this.size === 0) throw new Error('队列为空');
return this.front!.val;
}
/* 将链表转化为 Array 并返回 */
toArray(): number[] {
let node = this.front;
const res = new Array<number>(this.size);
for (let i = 0; i < res.length; i++) {
res[i] = node!.val;
node = node!.next;
}
return res;
}
}
```
=== "C"
```c title="linkedlist_queue.c"
[class]{linkedListQueue}-[func]{}
```
=== "C#"
```csharp title="linkedlist_queue.cs"
/* 基于链表实现的队列 */
class LinkedListQueue
{
private ListNode? front, rear; // 头结点 front ,尾结点 rear
private int queSize = 0;
public LinkedListQueue()
{
front = null;
rear = null;
}
/* 获取队列的长度 */
public int size()
{
return queSize;
}
/* 判断队列是否为空 */
public bool isEmpty()
{
return size() == 0;
}
/* 入队 */
public void push(int num)
{
// 尾结点后添加 num
ListNode node = new ListNode(num);
// 如果队列为空,则令头、尾结点都指向该结点
if (front == null)
{
front = node;
rear = node;
// 如果队列不为空,则将该结点添加到尾结点后
}
else if (rear != null)
{
rear.next = node;
rear = node;
}
queSize++;
}
/* 出队 */
public int pop()
{
int num = peek();
// 删除头结点
front = front?.next;
queSize--;
return num;
}
/* 访问队首元素 */
public int peek()
{
if (size() == 0 || front == null)
throw new Exception();
return front.val;
}
/* 将链表转化为 Array 并返回 */
public int[] toArray()
{
if (front == null)
return Array.Empty<int>();
ListNode node = front;
int[] res = new int[size()];
for (int i = 0; i < res.Length; i++)
{
res[i] = node.val;
node = node.next;
}
return res;
}
}
```
=== "Swift"
```swift title="linkedlist_queue.swift"
/* 基于链表实现的队列 */
class LinkedListQueue {
private var front: ListNode? // 头结点
private var rear: ListNode? // 尾结点
private var _size = 0
init() {}
/* 获取队列的长度 */
func size() -> Int {
_size
}
/* 判断队列是否为空 */
func isEmpty() -> Bool {
size() == 0
}
/* 入队 */
func push(num: Int) {
// 尾结点后添加 num
let node = ListNode(x: num)
// 如果队列为空,则令头、尾结点都指向该结点
if front == nil {
front = node
rear = node
}
// 如果队列不为空,则将该结点添加到尾结点后
else {
rear?.next = node
rear = node
}
_size += 1
}
/* 出队 */
@discardableResult
func pop() -> Int {
let num = peek()
// 删除头结点
front = front?.next
_size -= 1
return num
}
/* 访问队首元素 */
func peek() -> Int {
if isEmpty() {
fatalError("队列为空")
}
return front!.val
}
/* 将链表转化为 Array 并返回 */
func toArray() -> [Int] {
var node = front
var res = Array(repeating: 0, count: size())
for i in res.indices {
res[i] = node!.val
node = node?.next
}
return res
}
}
```
=== "Zig"
```zig title="linkedlist_queue.zig"
// 基于链表实现的队列
fn LinkedListQueue(comptime T: type) type {
return struct {
const Self = @This();
front: ?*inc.ListNode(T) = null, // 头结点 front
rear: ?*inc.ListNode(T) = null, // 尾结点 rear
que_size: usize = 0, // 队列的长度
mem_arena: ?std.heap.ArenaAllocator = null,
mem_allocator: std.mem.Allocator = undefined, // 内存分配器
// 构造方法(分配内存+初始化队列)
pub fn init(self: *Self, allocator: std.mem.Allocator) !void {
if (self.mem_arena == null) {
self.mem_arena = std.heap.ArenaAllocator.init(allocator);
self.mem_allocator = self.mem_arena.?.allocator();
}
self.front = null;
self.rear = null;
self.que_size = 0;
}
// 析构方法(释放内存)
pub fn deinit(self: *Self) void {
if (self.mem_arena == null) return;
self.mem_arena.?.deinit();
}
// 获取队列的长度
pub fn size(self: *Self) usize {
return self.que_size;
}
// 判断队列是否为空
pub fn isEmpty(self: *Self) bool {
return self.size() == 0;
}
// 访问队首元素
pub fn peek(self: *Self) T {
if (self.size() == 0) @panic("队列为空");
return self.front.?.val;
}
// 入队
pub fn push(self: *Self, num: T) !void {
// 尾结点后添加 num
var node = try self.mem_allocator.create(inc.ListNode(T));
node.init(num);
// 如果队列为空,则令头、尾结点都指向该结点
if (self.front == null) {
self.front = node;
self.rear = node;
// 如果队列不为空,则将该结点添加到尾结点后
} else {
self.rear.?.next = node;
self.rear = node;
}
self.que_size += 1;
}
// 出队
pub fn pop(self: *Self) T {
var num = self.peek();
// 删除头结点
self.front = self.front.?.next;
self.que_size -= 1;
return num;
}
// 将链表转换为数组
pub fn toArray(self: *Self) ![]T {
var node = self.front;
var res = try self.mem_allocator.alloc(T, self.size());
std.mem.set(T, res, @as(T, 0));
var i: usize = 0;
while (i < res.len) : (i += 1) {
res[i] = node.?.val;
node = node.?.next;
}
return res;
}
};
}
```
基于数组的实现
数组的删除首元素的时间复杂度为 O(n)
,这会导致出队操作效率低下。然而,我们可以采取下述的巧妙方法来避免这个问题。
考虑借助一个变量 front
来指向队首元素的索引,并维护变量 queSize
来记录队列长度。我们定义 rear = front + queSize
,该公式计算出来的 rear
指向“队尾元素索引 +1
”的位置。
在该设计下,数组中包含元素的有效区间为 [front, rear - 1]
,进而
- 对于入队操作,将输入元素赋值给
rear
索引处,并将queSize
自增1
即可; - 对于出队操作,仅需将
front
自增1
,并将queSize
自减1
即可;
观察发现,入队与出队操作都仅需单次操作即可完成,时间复杂度皆为 O(1)
。
细心的同学可能会发现一个问题:在不断入队与出队的过程中,front
和 rear
都在向右移动,在到达数组尾部后就无法继续移动了。为解决此问题,我们考虑将数组看作是首尾相接的,这样的数组被称为「环形数组」。
对于环形数组,我们需要令 front
或 rear
在越过数组尾部后,直接绕回到数组头部接续遍历。这种周期性规律可以通过「取余操作」来实现,详情请见以下代码。
=== "Java"
```java title="array_queue.java"
/* 基于环形数组实现的队列 */
class ArrayQueue {
private int[] nums; // 用于存储队列元素的数组
private int front; // 队首指针,指向队首元素
private int queSize; // 队列长度
public ArrayQueue(int capacity) {
nums = new int[capacity];
front = queSize = 0;
}
/* 获取队列的容量 */
public int capacity() {
return nums.length;
}
/* 获取队列的长度 */
public int size() {
return queSize;
}
/* 判断队列是否为空 */
public boolean isEmpty() {
return queSize == 0;
}
/* 入队 */
public void push(int num) {
if (queSize == capacity()) {
System.out.println("队列已满");
return;
}
// 计算尾指针,指向队尾索引 + 1
// 通过取余操作,实现 rear 越过数组尾部后回到头部
int rear = (front + queSize) % capacity();
// 将 num 添加至队尾
nums[rear] = num;
queSize++;
}
/* 出队 */
public int pop() {
int num = peek();
// 队首指针向后移动一位,若越过尾部则返回到数组头部
front = (front + 1) % capacity();
queSize--;
return num;
}
/* 访问队首元素 */
public int peek() {
if (isEmpty())
throw new EmptyStackException();
return nums[front];
}
/* 返回数组 */
public int[] toArray() {
// 仅转换有效长度范围内的列表元素
int[] res = new int[queSize];
for (int i = 0, j = front; i < queSize; i++, j++) {
res[i] = nums[j % capacity()];
}
return res;
}
}
```
=== "C++"
```cpp title="array_queue.cpp"
/* 基于环形数组实现的队列 */
class ArrayQueue {
private:
int *nums; // 用于存储队列元素的数组
int front; // 队首指针,指向队首元素
int queSize; // 队列长度
int queCapacity; // 队列容量
public:
ArrayQueue(int capacity) {
// 初始化数组
nums = new int[capacity];
queCapacity = capacity;
front = queSize = 0;
}
~ArrayQueue() {
delete[] nums;
}
/* 获取队列的容量 */
int capacity() {
return queCapacity;
}
/* 获取队列的长度 */
int size() {
return queSize;
}
/* 判断队列是否为空 */
bool empty() {
return size() == 0;
}
/* 入队 */
void push(int num) {
if (queSize == queCapacity) {
cout << "队列已满" << endl;
return;
}
// 计算队尾指针,指向队尾索引 + 1
// 通过取余操作,实现 rear 越过数组尾部后回到头部
int rear = (front + queSize) % queCapacity;
// 将 num 添加至队尾
nums[rear] = num;
queSize++;
}
/* 出队 */
void pop() {
int num = peek();
// 队首指针向后移动一位,若越过尾部则返回到数组头部
front = (front + 1) % queCapacity;
queSize--;
}
/* 访问队首元素 */
int peek() {
if (empty())
throw out_of_range("队列为空");
return nums[front];
}
/* 将数组转化为 Vector 并返回 */
vector<int> toVector() {
// 仅转换有效长度范围内的列表元素
vector<int> arr(queSize);
for (int i = 0, j = front; i < queSize; i++, j++) {
arr[i] = nums[j % queCapacity];
}
return arr;
}
};
```
=== "Python"
```python title="array_queue.py"
class ArrayQueue:
""" 基于环形数组实现的队列 """
def __init__(self, size: int) -> None:
""" 构造方法 """
self.__nums: List[int] = [0] * size # 用于存储队列元素的数组
self.__front: int = 0 # 队首指针,指向队首元素
self.__size: int = 0 # 队列长度
def capacity(self) -> int:
""" 获取队列的容量 """
return len(self.__nums)
def size(self) -> int:
""" 获取队列的长度 """
return self.__size
def is_empty(self) -> bool:
""" 判断队列是否为空 """
return self.__size == 0
def push(self, num: int) -> None:
""" 入队 """
assert self.__size < self.capacity(), "队列已满"
# 计算尾指针,指向队尾索引 + 1
# 通过取余操作,实现 rear 越过数组尾部后回到头部
rear: int = (self.__front + self.__size) % self.capacity()
# 将 num 添加至队尾
self.__nums[rear] = num
self.__size += 1
def pop(self) -> int:
""" 出队 """
num: int = self.peek()
# 队首指针向后移动一位,若越过尾部则返回到数组头部
self.__front = (self.__front + 1) % self.capacity()
self.__size -= 1
return num
def peek(self) -> int:
""" 访问队首元素 """
assert not self.is_empty(), "队列为空"
return self.__nums[self.__front]
def to_list(self) -> List[int]:
""" 返回列表用于打印 """
res: List[int] = [0] * self.size()
j: int = self.__front
for i in range(self.size()):
res[i] = self.__nums[(j % self.capacity())]
j += 1
return res
```
=== "Go"
```go title="array_queue.go"
/* 基于环形数组实现的队列 */
type arrayQueue struct {
nums []int // 用于存储队列元素的数组
front int // 队首指针,指向队首元素
queSize int // 队列长度
queCapacity int // 队列容量(即最大容纳元素数量)
}
/* 初始化队列 */
func newArrayQueue(queCapacity int) *arrayQueue {
return &arrayQueue{
nums: make([]int, queCapacity),
queCapacity: queCapacity,
front: 0,
queSize: 0,
}
}
/* 获取队列的长度 */
func (q *arrayQueue) size() int {
return q.queSize
}
/* 判断队列是否为空 */
func (q *arrayQueue) isEmpty() bool {
return q.queSize == 0
}
/* 入队 */
func (q *arrayQueue) push(num int) {
// 当 rear == queCapacity 表示队列已满
if q.queSize == q.queCapacity {
return
}
// 计算尾指针,指向队尾索引 + 1
// 通过取余操作,实现 rear 越过数组尾部后回到头部
rear := (q.front + q.queSize) % q.queCapacity
// 将 num 添加至队尾
q.nums[rear] = num
q.queSize++
}
/* 出队 */
func (q *arrayQueue) pop() any {
num := q.peek()
// 队首指针向后移动一位,若越过尾部则返回到数组头部
q.front = (q.front + 1) % q.queCapacity
q.queSize--
return num
}
/* 访问队首元素 */
func (q *arrayQueue) peek() any {
if q.isEmpty() {
return nil
}
return q.nums[q.front]
}
/* 获取 Slice 用于打印 */
func (q *arrayQueue) toSlice() []int {
rear := (q.front + q.queSize)
if rear >= q.queCapacity {
rear %= q.queCapacity
return append(q.nums[q.front:], q.nums[:rear]...)
}
return q.nums[q.front:rear]
}
```
=== "JavaScript"
```javascript title="array_queue.js"
/* 基于环形数组实现的队列 */
class ArrayQueue {
#nums; // 用于存储队列元素的数组
#front = 0; // 队首指针,指向队首元素
#queSize = 0; // 队列长度
constructor(capacity) {
this.#nums = new Array(capacity);
}
/* 获取队列的容量 */
get capacity() {
return this.#nums.length;
}
/* 获取队列的长度 */
get size() {
return this.#queSize;
}
/* 判断队列是否为空 */
empty() {
return this.#queSize == 0;
}
/* 入队 */
push(num) {
if (this.size == this.capacity) {
console.log("队列已满");
return;
}
// 计算尾指针,指向队尾索引 + 1
// 通过取余操作,实现 rear 越过数组尾部后回到头部
const rear = (this.#front + this.size) % this.capacity;
// 将 num 添加至队尾
this.#nums[rear] = num;
this.#queSize++;
}
/* 出队 */
pop() {
const num = this.peek();
// 队首指针向后移动一位,若越过尾部则返回到数组头部
this.#front = (this.#front + 1) % this.capacity;
this.#queSize--;
return num;
}
/* 访问队首元素 */
peek() {
if (this.empty())
throw new Error("队列为空");
return this.#nums[this.#front];
}
/* 返回 Array */
toArray() {
// 仅转换有效长度范围内的列表元素
const arr = new Array(this.size);
for (let i = 0, j = this.#front; i < this.size; i++, j++) {
arr[i] = this.#nums[j % this.capacity];
}
return arr;
}
}
```
=== "TypeScript"
```typescript title="array_queue.ts"
/* 基于环形数组实现的队列 */
class ArrayQueue {
private nums: number[]; // 用于存储队列元素的数组
private front: number; // 队首指针,指向队首元素
private queSize: number; // 队列长度
constructor(capacity: number) {
this.nums = new Array(capacity);
this.front = this.queSize = 0;
}
/* 获取队列的容量 */
get capacity(): number {
return this.nums.length;
}
/* 获取队列的长度 */
get size(): number {
return this.queSize;
}
/* 判断队列是否为空 */
empty(): boolean {
return this.queSize == 0;
}
/* 入队 */
push(num: number): void {
if (this.size == this.capacity) {
console.log("队列已满");
return;
}
// 计算尾指针,指向队尾索引 + 1
// 通过取余操作,实现 rear 越过数组尾部后回到头部
const rear = (this.front + this.queSize) % this.capacity;
// 将 num 添加至队尾
this.nums[rear] = num;
this.queSize++;
}
/* 出队 */
pop(): number {
const num = this.peek();
// 队首指针向后移动一位,若越过尾部则返回到数组头部
this.front = (this.front + 1) % this.capacity;
this.queSize--;
return num;
}
/* 访问队首元素 */
peek(): number {
if (this.empty())
throw new Error("队列为空");
return this.nums[this.front];
}
/* 返回 Array */
toArray(): number[] {
// 仅转换有效长度范围内的列表元素
const arr = new Array(this.size);
for (let i = 0, j = this.front; i < this.size; i++, j++) {
arr[i] = this.nums[j % this.capacity];
}
return arr;
}
}
```
=== "C"
```c title="array_queue.c"
[class]{arrayQueue}-[func]{}
```
=== "C#"
```csharp title="array_queue.cs"
/* 基于环形数组实现的队列 */
class ArrayQueue
{
private int[] nums; // 用于存储队列元素的数组
private int front; // 队首指针,指向队首元素
private int queSize; // 队列长度
public ArrayQueue(int capacity)
{
nums = new int[capacity];
front = queSize = 0;
}
/* 获取队列的容量 */
public int capacity()
{
return nums.Length;
}
/* 获取队列的长度 */
public int size()
{
return queSize;
}
/* 判断队列是否为空 */
public bool isEmpty()
{
return queSize == 0;
}
/* 入队 */
public void push(int num)
{
if (queSize == capacity())
{
Console.WriteLine("队列已满");
return;
}
// 计算尾指针,指向队尾索引 + 1
// 通过取余操作,实现 rear 越过数组尾部后回到头部
int rear = (front + queSize) % capacity();
// 将 num 添加至队尾
nums[rear] = num;
queSize++;
}
/* 出队 */
public int pop()
{
int num = peek();
// 队首指针向后移动一位,若越过尾部则返回到数组头部
front = (front + 1) % capacity();
queSize--;
return num;
}
/* 访问队首元素 */
public int peek()
{
if (isEmpty())
throw new Exception();
return nums[front];
}
/* 返回数组 */
public int[] toArray()
{
// 仅转换有效长度范围内的列表元素
int[] res = new int[queSize];
for (int i = 0, j = front; i < queSize; i++, j++)
{
res[i] = nums[j % this.capacity()];
}
return res;
}
}
```
=== "Swift"
```swift title="array_queue.swift"
/* 基于环形数组实现的队列 */
class ArrayQueue {
private var nums: [Int] // 用于存储队列元素的数组
private var front = 0 // 队首指针,指向队首元素
private var queSize = 0 // 队列长度
init(capacity: Int) {
// 初始化数组
nums = Array(repeating: 0, count: capacity)
}
/* 获取队列的容量 */
func capacity() -> Int {
nums.count
}
/* 获取队列的长度 */
func size() -> Int {
queSize
}
/* 判断队列是否为空 */
func isEmpty() -> Bool {
queSize == 0
}
/* 入队 */
func push(num: Int) {
if size() == capacity() {
print("队列已满")
return
}
// 计算尾指针,指向队尾索引 + 1
// 通过取余操作,实现 rear 越过数组尾部后回到头部
let rear = (front + queSize) % capacity()
// 将 num 添加至队尾
nums[rear] = num
queSize += 1
}
/* 出队 */
@discardableResult
func pop() -> Int {
let num = peek()
// 队首指针向后移动一位,若越过尾部则返回到数组头部
front = (front + 1) % capacity()
queSize -= 1
return num
}
/* 访问队首元素 */
func peek() -> Int {
if isEmpty() {
fatalError("队列为空")
}
return nums[front]
}
/* 返回数组 */
func toArray() -> [Int] {
// 仅转换有效长度范围内的列表元素
var res = Array(repeating: 0, count: queSize)
for (i, j) in sequence(first: (0, front), next: { $0 < self.queSize - 1 ? ($0 + 1, $1 + 1) : nil }) {
res[i] = nums[j % capacity()]
}
return res
}
}
```
=== "Zig"
```zig title="array_queue.zig"
// 基于环形数组实现的队列
fn ArrayQueue(comptime T: type) type {
return struct {
const Self = @This();
nums: []T = undefined, // 用于存储队列元素的数组
cap: usize = 0, // 队列容量
front: usize = 0, // 队首指针,指向队首元素
que_size: usize = 0, // 尾指针,指向队尾 + 1
mem_arena: ?std.heap.ArenaAllocator = null,
mem_allocator: std.mem.Allocator = undefined, // 内存分配器
// 构造方法(分配内存+初始化数组)
pub fn init(self: *Self, allocator: std.mem.Allocator, cap: usize) !void {
if (self.mem_arena == null) {
self.mem_arena = std.heap.ArenaAllocator.init(allocator);
self.mem_allocator = self.mem_arena.?.allocator();
}
self.cap = cap;
self.nums = try self.mem_allocator.alloc(T, self.cap);
std.mem.set(T, self.nums, @as(T, 0));
}
// 析构方法(释放内存)
pub fn deinit(self: *Self) void {
if (self.mem_arena == null) return;
self.mem_arena.?.deinit();
}
// 获取队列的容量
pub fn capacity(self: *Self) usize {
return self.cap;
}
// 获取队列的长度
pub fn size(self: *Self) usize {
return self.que_size;
}
// 判断队列是否为空
pub fn isEmpty(self: *Self) bool {
return self.que_size == 0;
}
// 入队
pub fn push(self: *Self, num: T) !void {
if (self.size() == self.capacity()) {
std.debug.print("队列已满\n", .{});
return;
}
// 计算尾指针,指向队尾索引 + 1
// 通过取余操作,实现 rear 越过数组尾部后回到头部
var rear = (self.front + self.que_size) % self.capacity();
// 将 num 添加至队尾
self.nums[rear] = num;
self.que_size += 1;
}
// 出队
pub fn pop(self: *Self) T {
var num = self.peek();
// 队首指针向后移动一位,若越过尾部则返回到数组头部
self.front = (self.front + 1) % self.capacity();
self.que_size -= 1;
return num;
}
// 访问队首元素
pub fn peek(self: *Self) T {
if (self.isEmpty()) @panic("队列为空");
return self.nums[self.front];
}
// 返回数组
pub fn toArray(self: *Self) ![]T {
// 仅转换有效长度范围内的列表元素
var res = try self.mem_allocator.alloc(T, self.size());
std.mem.set(T, res, @as(T, 0));
var i: usize = 0;
var j: usize = self.front;
while (i < self.size()) : ({ i += 1; j += 1; }) {
res[i] = self.nums[j % self.capacity()];
}
return res;
}
};
}
```
以上实现的队列仍存在局限性,即长度不可变。不过这个问题很容易解决,我们可以将数组替换为列表(即动态数组),从而引入扩容机制。有兴趣的同学可以尝试自行实现。
5.2.3. 两种实现对比
与栈的结论一致,在此不再赘述。
5.2.4. 队列典型应用
- 淘宝订单。购物者下单后,订单就被加入到队列之中,随后系统再根据顺序依次处理队列中的订单。在双十一时,在短时间内会产生海量的订单,如何处理「高并发」则是工程师们需要重点思考的问题。
- 各种待办事项。任何需要实现“先来后到”的功能,例如打印机的任务队列、餐厅的出餐队列等等。