hello-algo/zh-Hant/docs/chapter_searching/binary_search.md
2024-04-06 03:02:20 +08:00

38 KiB
Executable file
Raw Blame History

comments
true

10.1   二分搜尋

二分搜尋binary search是一種基於分治策略的高效搜尋演算法。它利用資料的有序性,每輪縮小一半搜尋範圍,直至找到目標元素或搜尋區間為空為止。

!!! question

給定一個長度為 $n$ 的陣列 `nums` ,元素按從小到大的順序排列且不重複。請查詢並返回元素 `target` 在該陣列中的索引。若陣列不包含該元素,則返回 $-1$ 。示例如圖 10-1 所示。

二分搜尋示例資料{ class="animation-figure" }

圖 10-1   二分搜尋示例資料

如圖 10-2 所示,我們先初始化指標 i = 0j = n - 1 ,分別指向陣列首元素和尾元素,代表搜尋區間 [0, n - 1] 。請注意,中括號表示閉區間,其包含邊界值本身。

接下來,迴圈執行以下兩步。

  1. 計算中點索引 m = \lfloor {(i + j) / 2} \rfloor ,其中 \lfloor \: \rfloor 表示向下取整操作。
  2. 判斷 nums[m]target 的大小關係,分為以下三種情況。
    1. nums[m] < target 時,說明 target 在區間 [m + 1, j] 中,因此執行 i = m + 1
    2. nums[m] > target 時,說明 target 在區間 [i, m - 1] 中,因此執行 j = m - 1
    3. nums[m] = target 時,說明找到 target ,因此返回索引 m

若陣列不包含目標元素,搜尋區間最終會縮小為空。此時返回 -1

=== "<1>" 二分搜尋流程{ class="animation-figure" }

=== "<2>" binary_search_step2{ class="animation-figure" }

=== "<3>" binary_search_step3{ class="animation-figure" }

=== "<4>" binary_search_step4{ class="animation-figure" }

=== "<5>" binary_search_step5{ class="animation-figure" }

=== "<6>" binary_search_step6{ class="animation-figure" }

=== "<7>" binary_search_step7{ class="animation-figure" }

圖 10-2   二分搜尋流程

值得注意的是,由於 ij 都是 int 型別,因此 i + j 可能會超出 int 型別的取值範圍。為了避免大數越界,我們通常採用公式 m = \lfloor {i + (j - i) / 2} \rfloor 來計算中點。

程式碼如下所示:

=== "Python"

```python title="binary_search.py"
def binary_search(nums: list[int], target: int) -> int:
    """二分搜尋(雙閉區間)"""
    # 初始化雙閉區間 [0, n-1] ,即 i, j 分別指向陣列首元素、尾元素
    i, j = 0, len(nums) - 1
    # 迴圈,當搜尋區間為空時跳出(當 i > j 時為空)
    while i <= j:
        # 理論上 Python 的數字可以無限大(取決於記憶體大小),無須考慮大數越界問題
        m = (i + j) // 2  # 計算中點索引 m
        if nums[m] < target:
            i = m + 1  # 此情況說明 target 在區間 [m+1, j] 中
        elif nums[m] > target:
            j = m - 1  # 此情況說明 target 在區間 [i, m-1] 中
        else:
            return m  # 找到目標元素,返回其索引
    return -1  # 未找到目標元素,返回 -1
```

=== "C++"

```cpp title="binary_search.cpp"
/* 二分搜尋(雙閉區間) */
int binarySearch(vector<int> &nums, int target) {
    // 初始化雙閉區間 [0, n-1] ,即 i, j 分別指向陣列首元素、尾元素
    int i = 0, j = nums.size() - 1;
    // 迴圈,當搜尋區間為空時跳出(當 i > j 時為空)
    while (i <= j) {
        int m = i + (j - i) / 2; // 計算中點索引 m
        if (nums[m] < target)    // 此情況說明 target 在區間 [m+1, j] 中
            i = m + 1;
        else if (nums[m] > target) // 此情況說明 target 在區間 [i, m-1] 中
            j = m - 1;
        else // 找到目標元素,返回其索引
            return m;
    }
    // 未找到目標元素,返回 -1
    return -1;
}
```

=== "Java"

```java title="binary_search.java"
/* 二分搜尋(雙閉區間) */
int binarySearch(int[] nums, int target) {
    // 初始化雙閉區間 [0, n-1] ,即 i, j 分別指向陣列首元素、尾元素
    int i = 0, j = nums.length - 1;
    // 迴圈,當搜尋區間為空時跳出(當 i > j 時為空)
    while (i <= j) {
        int m = i + (j - i) / 2; // 計算中點索引 m
        if (nums[m] < target) // 此情況說明 target 在區間 [m+1, j] 中
            i = m + 1;
        else if (nums[m] > target) // 此情況說明 target 在區間 [i, m-1] 中
            j = m - 1;
        else // 找到目標元素,返回其索引
            return m;
    }
    // 未找到目標元素,返回 -1
    return -1;
}
```

=== "C#"

```csharp title="binary_search.cs"
/* 二分搜尋(雙閉區間) */
int BinarySearch(int[] nums, int target) {
    // 初始化雙閉區間 [0, n-1] ,即 i, j 分別指向陣列首元素、尾元素
    int i = 0, j = nums.Length - 1;
    // 迴圈,當搜尋區間為空時跳出(當 i > j 時為空)
    while (i <= j) {
        int m = i + (j - i) / 2;   // 計算中點索引 m
        if (nums[m] < target)      // 此情況說明 target 在區間 [m+1, j] 中
            i = m + 1;
        else if (nums[m] > target) // 此情況說明 target 在區間 [i, m-1] 中
            j = m - 1;
        else                       // 找到目標元素,返回其索引
            return m;
    }
    // 未找到目標元素,返回 -1
    return -1;
}
```

=== "Go"

```go title="binary_search.go"
/* 二分搜尋(雙閉區間) */
func binarySearch(nums []int, target int) int {
    // 初始化雙閉區間 [0, n-1] ,即 i, j 分別指向陣列首元素、尾元素
    i, j := 0, len(nums)-1
    // 迴圈,當搜尋區間為空時跳出(當 i > j 時為空)
    for i <= j {
        m := i + (j-i)/2      // 計算中點索引 m
        if nums[m] < target { // 此情況說明 target 在區間 [m+1, j] 中
            i = m + 1
        } else if nums[m] > target { // 此情況說明 target 在區間 [i, m-1] 中
            j = m - 1
        } else { // 找到目標元素,返回其索引
            return m
        }
    }
    // 未找到目標元素,返回 -1
    return -1
}
```

=== "Swift"

```swift title="binary_search.swift"
/* 二分搜尋(雙閉區間) */
func binarySearch(nums: [Int], target: Int) -> Int {
    // 初始化雙閉區間 [0, n-1] ,即 i, j 分別指向陣列首元素、尾元素
    var i = nums.startIndex
    var j = nums.endIndex - 1
    // 迴圈,當搜尋區間為空時跳出(當 i > j 時為空)
    while i <= j {
        let m = i + (j - i) / 2 // 計算中點索引 m
        if nums[m] < target { // 此情況說明 target 在區間 [m+1, j] 中
            i = m + 1
        } else if nums[m] > target { // 此情況說明 target 在區間 [i, m-1] 中
            j = m - 1
        } else { // 找到目標元素,返回其索引
            return m
        }
    }
    // 未找到目標元素,返回 -1
    return -1
}
```

=== "JS"

```javascript title="binary_search.js"
/* 二分搜尋(雙閉區間) */
function binarySearch(nums, target) {
    // 初始化雙閉區間 [0, n-1] ,即 i, j 分別指向陣列首元素、尾元素
    let i = 0,
        j = nums.length - 1;
    // 迴圈,當搜尋區間為空時跳出(當 i > j 時為空)
    while (i <= j) {
        // 計算中點索引 m ,使用 parseInt() 向下取整
        const m = parseInt(i + (j - i) / 2);
        if (nums[m] < target)
            // 此情況說明 target 在區間 [m+1, j] 中
            i = m + 1;
        else if (nums[m] > target)
            // 此情況說明 target 在區間 [i, m-1] 中
            j = m - 1;
        else return m; // 找到目標元素,返回其索引
    }
    // 未找到目標元素,返回 -1
    return -1;
}
```

=== "TS"

```typescript title="binary_search.ts"
/* 二分搜尋(雙閉區間) */
function binarySearch(nums: number[], target: number): number {
    // 初始化雙閉區間 [0, n-1] ,即 i, j 分別指向陣列首元素、尾元素
    let i = 0,
        j = nums.length - 1;
    // 迴圈,當搜尋區間為空時跳出(當 i > j 時為空)
    while (i <= j) {
        // 計算中點索引 m
        const m = Math.floor(i + (j - i) / 2);
        if (nums[m] < target) {
            // 此情況說明 target 在區間 [m+1, j] 中
            i = m + 1;
        } else if (nums[m] > target) {
            // 此情況說明 target 在區間 [i, m-1] 中
            j = m - 1;
        } else {
            // 找到目標元素,返回其索引
            return m;
        }
    }
    return -1; // 未找到目標元素,返回 -1
}
```

=== "Dart"

```dart title="binary_search.dart"
/* 二分搜尋(雙閉區間) */
int binarySearch(List<int> nums, int target) {
  // 初始化雙閉區間 [0, n-1] ,即 i, j 分別指向陣列首元素、尾元素
  int i = 0, j = nums.length - 1;
  // 迴圈,當搜尋區間為空時跳出(當 i > j 時為空)
  while (i <= j) {
    int m = i + (j - i) ~/ 2; // 計算中點索引 m
    if (nums[m] < target) {
      // 此情況說明 target 在區間 [m+1, j] 中
      i = m + 1;
    } else if (nums[m] > target) {
      // 此情況說明 target 在區間 [i, m-1] 中
      j = m - 1;
    } else {
      // 找到目標元素,返回其索引
      return m;
    }
  }
  // 未找到目標元素,返回 -1
  return -1;
}
```

=== "Rust"

```rust title="binary_search.rs"
/* 二分搜尋(雙閉區間) */
fn binary_search(nums: &[i32], target: i32) -> i32 {
    // 初始化雙閉區間 [0, n-1] ,即 i, j 分別指向陣列首元素、尾元素
    let mut i = 0;
    let mut j = nums.len() as i32 - 1;
    // 迴圈,當搜尋區間為空時跳出(當 i > j 時為空)
    while i <= j {
        let m = i + (j - i) / 2; // 計算中點索引 m
        if nums[m as usize] < target {
            // 此情況說明 target 在區間 [m+1, j] 中
            i = m + 1;
        } else if nums[m as usize] > target {
            // 此情況說明 target 在區間 [i, m-1] 中
            j = m - 1;
        } else {
            // 找到目標元素,返回其索引
            return m;
        }
    }
    // 未找到目標元素,返回 -1
    return -1;
}
```

=== "C"

```c title="binary_search.c"
/* 二分搜尋(雙閉區間) */
int binarySearch(int *nums, int len, int target) {
    // 初始化雙閉區間 [0, n-1] ,即 i, j 分別指向陣列首元素、尾元素
    int i = 0, j = len - 1;
    // 迴圈,當搜尋區間為空時跳出(當 i > j 時為空)
    while (i <= j) {
        int m = i + (j - i) / 2; // 計算中點索引 m
        if (nums[m] < target)    // 此情況說明 target 在區間 [m+1, j] 中
            i = m + 1;
        else if (nums[m] > target) // 此情況說明 target 在區間 [i, m-1] 中
            j = m - 1;
        else // 找到目標元素,返回其索引
            return m;
    }
    // 未找到目標元素,返回 -1
    return -1;
}
```

=== "Kotlin"

```kotlin title="binary_search.kt"
/* 二分搜尋(雙閉區間) */
fun binarySearch(nums: IntArray, target: Int): Int {
    // 初始化雙閉區間 [0, n-1] ,即 i, j 分別指向陣列首元素、尾元素
    var i = 0
    var j = nums.size - 1
    // 迴圈,當搜尋區間為空時跳出(當 i > j 時為空)
    while (i <= j) {
        val m = i + (j - i) / 2 // 計算中點索引 m
        if (nums[m] < target) // 此情況說明 target 在區間 [m+1, j] 中
            i = m + 1
        else if (nums[m] > target) // 此情況說明 target 在區間 [i, m-1] 中
            j = m - 1
        else  // 找到目標元素,返回其索引
            return m
    }
    // 未找到目標元素,返回 -1
    return -1
}
```

=== "Ruby"

```ruby title="binary_search.rb"
[class]{}-[func]{binary_search}
```

=== "Zig"

```zig title="binary_search.zig"
// 二分搜尋(雙閉區間)
fn binarySearch(comptime T: type, nums: std.ArrayList(T), target: T) T {
    // 初始化雙閉區間 [0, n-1] ,即 i, j 分別指向陣列首元素、尾元素
    var i: usize = 0;
    var j: usize = nums.items.len - 1;
    // 迴圈,當搜尋區間為空時跳出(當 i > j 時為空)
    while (i <= j) {
        var m = i + (j - i) / 2;                // 計算中點索引 m
        if (nums.items[m] < target) {           // 此情況說明 target 在區間 [m+1, j] 中
            i = m + 1;
        } else if (nums.items[m] > target) {    // 此情況說明 target 在區間 [i, m-1] 中
            j = m - 1;
        } else {                                // 找到目標元素,返回其索引
            return @intCast(m);
        }
    }
    // 未找到目標元素,返回 -1
    return -1;
}
```

??? pythontutor "視覺化執行"

<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20binary_search%28nums%3A%20list%5Bint%5D,%20target%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%EF%BC%89%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%20%5B0,%20n-1%5D%20%EF%BC%8C%E5%8D%B3%20i,%20j%20%E5%88%86%E5%88%AB%E6%8C%87%E5%90%91%E6%95%B0%E7%BB%84%E9%A6%96%E5%85%83%E7%B4%A0%E3%80%81%E5%B0%BE%E5%85%83%E7%B4%A0%0A%20%20%20%20i,%20j%20%3D%200,%20len%28nums%29%20-%201%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%EF%BC%8C%E5%BD%93%E6%90%9C%E7%B4%A2%E5%8C%BA%E9%97%B4%E4%B8%BA%E7%A9%BA%E6%97%B6%E8%B7%B3%E5%87%BA%EF%BC%88%E5%BD%93%20i%20%3E%20j%20%E6%97%B6%E4%B8%BA%E7%A9%BA%EF%BC%89%0A%20%20%20%20while%20i%20%3C%3D%20j%3A%0A%20%20%20%20%20%20%20%20%23%20%E7%90%86%E8%AE%BA%E4%B8%8A%20Python%20%E7%9A%84%E6%95%B0%E5%AD%97%E5%8F%AF%E4%BB%A5%E6%97%A0%E9%99%90%E5%A4%A7%EF%BC%88%E5%8F%96%E5%86%B3%E4%BA%8E%E5%86%85%E5%AD%98%E5%A4%A7%E5%B0%8F%EF%BC%89%EF%BC%8C%E6%97%A0%E9%A1%BB%E8%80%83%E8%99%91%E5%A4%A7%E6%95%B0%E8%B6%8A%E7%95%8C%E9%97%AE%E9%A2%98%0A%20%20%20%20%20%20%20%20m%20%3D%20%28i%20%2B%20j%29%20//%202%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%E7%B4%A2%E5%BC%95%20m%0A%20%20%20%20%20%20%20%20if%20nums%5Bm%5D%20%3C%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%3D%20m%20%2B%201%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bm%2B1,%20j%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20elif%20nums%5Bm%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%3D%20m%20-%201%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bi,%20m-1%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20m%20%20%23%20%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%E5%85%B6%E7%B4%A2%E5%BC%95%0A%20%20%20%20return%20-1%20%20%23%20%E6%9C%AA%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%20-1%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20target%20%3D%206%0A%20%20%20%20nums%20%3D%20%5B1,%203,%206,%208,%2012,%2015,%2023,%2026,%2031,%2035%5D%0A%0A%20%20%20%20%23%20%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%EF%BC%89%0A%20%20%20%20index%20%3D%20binary_search%28nums,%20target%29%0A%20%20%20%20print%28%22%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%206%20%E7%9A%84%E7%B4%A2%E5%BC%95%20%3D%20%22,%20index%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20binary_search%28nums%3A%20list%5Bint%5D,%20target%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%EF%BC%89%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%20%5B0,%20n-1%5D%20%EF%BC%8C%E5%8D%B3%20i,%20j%20%E5%88%86%E5%88%AB%E6%8C%87%E5%90%91%E6%95%B0%E7%BB%84%E9%A6%96%E5%85%83%E7%B4%A0%E3%80%81%E5%B0%BE%E5%85%83%E7%B4%A0%0A%20%20%20%20i,%20j%20%3D%200,%20len%28nums%29%20-%201%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%EF%BC%8C%E5%BD%93%E6%90%9C%E7%B4%A2%E5%8C%BA%E9%97%B4%E4%B8%BA%E7%A9%BA%E6%97%B6%E8%B7%B3%E5%87%BA%EF%BC%88%E5%BD%93%20i%20%3E%20j%20%E6%97%B6%E4%B8%BA%E7%A9%BA%EF%BC%89%0A%20%20%20%20while%20i%20%3C%3D%20j%3A%0A%20%20%20%20%20%20%20%20%23%20%E7%90%86%E8%AE%BA%E4%B8%8A%20Python%20%E7%9A%84%E6%95%B0%E5%AD%97%E5%8F%AF%E4%BB%A5%E6%97%A0%E9%99%90%E5%A4%A7%EF%BC%88%E5%8F%96%E5%86%B3%E4%BA%8E%E5%86%85%E5%AD%98%E5%A4%A7%E5%B0%8F%EF%BC%89%EF%BC%8C%E6%97%A0%E9%A1%BB%E8%80%83%E8%99%91%E5%A4%A7%E6%95%B0%E8%B6%8A%E7%95%8C%E9%97%AE%E9%A2%98%0A%20%20%20%20%20%20%20%20m%20%3D%20%28i%20%2B%20j%29%20//%202%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%E7%B4%A2%E5%BC%95%20m%0A%20%20%20%20%20%20%20%20if%20nums%5Bm%5D%20%3C%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%3D%20m%20%2B%201%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bm%2B1,%20j%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20elif%20nums%5Bm%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%3D%20m%20-%201%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bi,%20m-1%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20m%20%20%23%20%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%E5%85%B6%E7%B4%A2%E5%BC%95%0A%20%20%20%20return%20-1%20%20%23%20%E6%9C%AA%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%20-1%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20target%20%3D%206%0A%20%20%20%20nums%20%3D%20%5B1,%203,%206,%208,%2012,%2015,%2023,%2026,%2031,%2035%5D%0A%0A%20%20%20%20%23%20%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%EF%BC%89%0A%20%20%20%20index%20%3D%20binary_search%28nums,%20target%29%0A%20%20%20%20print%28%22%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%206%20%E7%9A%84%E7%B4%A2%E5%BC%95%20%3D%20%22,%20index%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>

時間複雜度為 $O(\log n)$ :在二分迴圈中,區間每輪縮小一半,因此迴圈次數為 \log_2 n

空間複雜度為 $O(1)$ :指標 ij 使用常數大小空間。

10.1.1   區間表示方法

除了上述雙閉區間外,常見的區間表示還有“左閉右開”區間,定義為 [0, n) ,即左邊界包含自身,右邊界不包含自身。在該表示下,區間 [i, j)i = j 時為空。

我們可以基於該表示實現具有相同功能的二分搜尋演算法:

=== "Python"

```python title="binary_search.py"
def binary_search_lcro(nums: list[int], target: int) -> int:
    """二分搜尋(左閉右開區間)"""
    # 初始化左閉右開區間 [0, n) ,即 i, j 分別指向陣列首元素、尾元素+1
    i, j = 0, len(nums)
    # 迴圈,當搜尋區間為空時跳出(當 i = j 時為空)
    while i < j:
        m = (i + j) // 2  # 計算中點索引 m
        if nums[m] < target:
            i = m + 1  # 此情況說明 target 在區間 [m+1, j) 中
        elif nums[m] > target:
            j = m  # 此情況說明 target 在區間 [i, m) 中
        else:
            return m  # 找到目標元素,返回其索引
    return -1  # 未找到目標元素,返回 -1
```

=== "C++"

```cpp title="binary_search.cpp"
/* 二分搜尋(左閉右開區間) */
int binarySearchLCRO(vector<int> &nums, int target) {
    // 初始化左閉右開區間 [0, n) ,即 i, j 分別指向陣列首元素、尾元素+1
    int i = 0, j = nums.size();
    // 迴圈,當搜尋區間為空時跳出(當 i = j 時為空)
    while (i < j) {
        int m = i + (j - i) / 2; // 計算中點索引 m
        if (nums[m] < target)    // 此情況說明 target 在區間 [m+1, j) 中
            i = m + 1;
        else if (nums[m] > target) // 此情況說明 target 在區間 [i, m) 中
            j = m;
        else // 找到目標元素,返回其索引
            return m;
    }
    // 未找到目標元素,返回 -1
    return -1;
}
```

=== "Java"

```java title="binary_search.java"
/* 二分搜尋(左閉右開區間) */
int binarySearchLCRO(int[] nums, int target) {
    // 初始化左閉右開區間 [0, n) ,即 i, j 分別指向陣列首元素、尾元素+1
    int i = 0, j = nums.length;
    // 迴圈,當搜尋區間為空時跳出(當 i = j 時為空)
    while (i < j) {
        int m = i + (j - i) / 2; // 計算中點索引 m
        if (nums[m] < target) // 此情況說明 target 在區間 [m+1, j) 中
            i = m + 1;
        else if (nums[m] > target) // 此情況說明 target 在區間 [i, m) 中
            j = m;
        else // 找到目標元素,返回其索引
            return m;
    }
    // 未找到目標元素,返回 -1
    return -1;
}
```

=== "C#"

```csharp title="binary_search.cs"
/* 二分搜尋(左閉右開區間) */
int BinarySearchLCRO(int[] nums, int target) {
    // 初始化左閉右開區間 [0, n) ,即 i, j 分別指向陣列首元素、尾元素+1
    int i = 0, j = nums.Length;
    // 迴圈,當搜尋區間為空時跳出(當 i = j 時為空)
    while (i < j) {
        int m = i + (j - i) / 2;   // 計算中點索引 m
        if (nums[m] < target)      // 此情況說明 target 在區間 [m+1, j) 中
            i = m + 1;
        else if (nums[m] > target) // 此情況說明 target 在區間 [i, m) 中
            j = m;
        else                       // 找到目標元素,返回其索引
            return m;
    }
    // 未找到目標元素,返回 -1
    return -1;
}
```

=== "Go"

```go title="binary_search.go"
/* 二分搜尋(左閉右開區間) */
func binarySearchLCRO(nums []int, target int) int {
    // 初始化左閉右開區間 [0, n) ,即 i, j 分別指向陣列首元素、尾元素+1
    i, j := 0, len(nums)
    // 迴圈,當搜尋區間為空時跳出(當 i = j 時為空)
    for i < j {
        m := i + (j-i)/2      // 計算中點索引 m
        if nums[m] < target { // 此情況說明 target 在區間 [m+1, j) 中
            i = m + 1
        } else if nums[m] > target { // 此情況說明 target 在區間 [i, m) 中
            j = m
        } else { // 找到目標元素,返回其索引
            return m
        }
    }
    // 未找到目標元素,返回 -1
    return -1
}
```

=== "Swift"

```swift title="binary_search.swift"
/* 二分搜尋(左閉右開區間) */
func binarySearchLCRO(nums: [Int], target: Int) -> Int {
    // 初始化左閉右開區間 [0, n) ,即 i, j 分別指向陣列首元素、尾元素+1
    var i = nums.startIndex
    var j = nums.endIndex
    // 迴圈,當搜尋區間為空時跳出(當 i = j 時為空)
    while i < j {
        let m = i + (j - i) / 2 // 計算中點索引 m
        if nums[m] < target { // 此情況說明 target 在區間 [m+1, j) 中
            i = m + 1
        } else if nums[m] > target { // 此情況說明 target 在區間 [i, m) 中
            j = m
        } else { // 找到目標元素,返回其索引
            return m
        }
    }
    // 未找到目標元素,返回 -1
    return -1
}
```

=== "JS"

```javascript title="binary_search.js"
/* 二分搜尋(左閉右開區間) */
function binarySearchLCRO(nums, target) {
    // 初始化左閉右開區間 [0, n) ,即 i, j 分別指向陣列首元素、尾元素+1
    let i = 0,
        j = nums.length;
    // 迴圈,當搜尋區間為空時跳出(當 i = j 時為空)
    while (i < j) {
        // 計算中點索引 m ,使用 parseInt() 向下取整
        const m = parseInt(i + (j - i) / 2);
        if (nums[m] < target)
            // 此情況說明 target 在區間 [m+1, j) 中
            i = m + 1;
        else if (nums[m] > target)
            // 此情況說明 target 在區間 [i, m) 中
            j = m;
        // 找到目標元素,返回其索引
        else return m;
    }
    // 未找到目標元素,返回 -1
    return -1;
}
```

=== "TS"

```typescript title="binary_search.ts"
/* 二分搜尋(左閉右開區間) */
function binarySearchLCRO(nums: number[], target: number): number {
    // 初始化左閉右開區間 [0, n) ,即 i, j 分別指向陣列首元素、尾元素+1
    let i = 0,
        j = nums.length;
    // 迴圈,當搜尋區間為空時跳出(當 i = j 時為空)
    while (i < j) {
        // 計算中點索引 m
        const m = Math.floor(i + (j - i) / 2);
        if (nums[m] < target) {
            // 此情況說明 target 在區間 [m+1, j) 中
            i = m + 1;
        } else if (nums[m] > target) {
            // 此情況說明 target 在區間 [i, m) 中
            j = m;
        } else {
            // 找到目標元素,返回其索引
            return m;
        }
    }
    return -1; // 未找到目標元素,返回 -1
}
```

=== "Dart"

```dart title="binary_search.dart"
/* 二分搜尋(左閉右開區間) */
int binarySearchLCRO(List<int> nums, int target) {
  // 初始化左閉右開區間 [0, n) ,即 i, j 分別指向陣列首元素、尾元素+1
  int i = 0, j = nums.length;
  // 迴圈,當搜尋區間為空時跳出(當 i = j 時為空)
  while (i < j) {
    int m = i + (j - i) ~/ 2; // 計算中點索引 m
    if (nums[m] < target) {
      // 此情況說明 target 在區間 [m+1, j) 中
      i = m + 1;
    } else if (nums[m] > target) {
      // 此情況說明 target 在區間 [i, m) 中
      j = m;
    } else {
      // 找到目標元素,返回其索引
      return m;
    }
  }
  // 未找到目標元素,返回 -1
  return -1;
}
```

=== "Rust"

```rust title="binary_search.rs"
/* 二分搜尋(左閉右開區間) */
fn binary_search_lcro(nums: &[i32], target: i32) -> i32 {
    // 初始化左閉右開區間 [0, n) ,即 i, j 分別指向陣列首元素、尾元素+1
    let mut i = 0;
    let mut j = nums.len() as i32;
    // 迴圈,當搜尋區間為空時跳出(當 i = j 時為空)
    while i < j {
        let m = i + (j - i) / 2; // 計算中點索引 m
        if nums[m as usize] < target {
            // 此情況說明 target 在區間 [m+1, j) 中
            i = m + 1;
        } else if nums[m as usize] > target {
            // 此情況說明 target 在區間 [i, m) 中
            j = m;
        } else {
            // 找到目標元素,返回其索引
            return m;
        }
    }
    // 未找到目標元素,返回 -1
    return -1;
}
```

=== "C"

```c title="binary_search.c"
/* 二分搜尋(左閉右開區間) */
int binarySearchLCRO(int *nums, int len, int target) {
    // 初始化左閉右開區間 [0, n) ,即 i, j 分別指向陣列首元素、尾元素+1
    int i = 0, j = len;
    // 迴圈,當搜尋區間為空時跳出(當 i = j 時為空)
    while (i < j) {
        int m = i + (j - i) / 2; // 計算中點索引 m
        if (nums[m] < target)    // 此情況說明 target 在區間 [m+1, j) 中
            i = m + 1;
        else if (nums[m] > target) // 此情況說明 target 在區間 [i, m) 中
            j = m;
        else // 找到目標元素,返回其索引
            return m;
    }
    // 未找到目標元素,返回 -1
    return -1;
}
```

=== "Kotlin"

```kotlin title="binary_search.kt"
/* 二分搜尋(左閉右開區間) */
fun binarySearchLCRO(nums: IntArray, target: Int): Int {
    // 初始化左閉右開區間 [0, n) ,即 i, j 分別指向陣列首元素、尾元素+1
    var i = 0
    var j = nums.size
    // 迴圈,當搜尋區間為空時跳出(當 i = j 時為空)
    while (i < j) {
        val m = i + (j - i) / 2 // 計算中點索引 m
        if (nums[m] < target) // 此情況說明 target 在區間 [m+1, j) 中
            i = m + 1
        else if (nums[m] > target) // 此情況說明 target 在區間 [i, m) 中
            j = m
        else  // 找到目標元素,返回其索引
            return m
    }
    // 未找到目標元素,返回 -1
    return -1
}
```

=== "Ruby"

```ruby title="binary_search.rb"
[class]{}-[func]{binary_search_lcro}
```

=== "Zig"

```zig title="binary_search.zig"
// 二分搜尋(左閉右開區間)
fn binarySearchLCRO(comptime T: type, nums: std.ArrayList(T), target: T) T {
    // 初始化左閉右開區間 [0, n) ,即 i, j 分別指向陣列首元素、尾元素+1
    var i: usize = 0;
    var j: usize = nums.items.len;
    // 迴圈,當搜尋區間為空時跳出(當 i = j 時為空)
    while (i <= j) {
        var m = i + (j - i) / 2;                // 計算中點索引 m
        if (nums.items[m] < target) {           // 此情況說明 target 在區間 [m+1, j) 中
            i = m + 1;
        } else if (nums.items[m] > target) {    // 此情況說明 target 在區間 [i, m) 中
            j = m;
        } else {                                // 找到目標元素,返回其索引
            return @intCast(m);
        }
    }
    // 未找到目標元素,返回 -1
    return -1;
}
```

??? pythontutor "視覺化執行"

<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20binary_search_lcro%28nums%3A%20list%5Bint%5D,%20target%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%B7%A6%E9%97%AD%E5%8F%B3%E5%BC%80%E5%8C%BA%E9%97%B4%EF%BC%89%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%B7%A6%E9%97%AD%E5%8F%B3%E5%BC%80%E5%8C%BA%E9%97%B4%20%5B0,%20n%29%20%EF%BC%8C%E5%8D%B3%20i,%20j%20%E5%88%86%E5%88%AB%E6%8C%87%E5%90%91%E6%95%B0%E7%BB%84%E9%A6%96%E5%85%83%E7%B4%A0%E3%80%81%E5%B0%BE%E5%85%83%E7%B4%A0%2B1%0A%20%20%20%20i,%20j%20%3D%200,%20len%28nums%29%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%EF%BC%8C%E5%BD%93%E6%90%9C%E7%B4%A2%E5%8C%BA%E9%97%B4%E4%B8%BA%E7%A9%BA%E6%97%B6%E8%B7%B3%E5%87%BA%EF%BC%88%E5%BD%93%20i%20%3D%20j%20%E6%97%B6%E4%B8%BA%E7%A9%BA%EF%BC%89%0A%20%20%20%20while%20i%20%3C%20j%3A%0A%20%20%20%20%20%20%20%20m%20%3D%20%28i%20%2B%20j%29%20//%202%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%E7%B4%A2%E5%BC%95%20m%0A%20%20%20%20%20%20%20%20if%20nums%5Bm%5D%20%3C%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%3D%20m%20%2B%201%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bm%2B1,%20j%29%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20elif%20nums%5Bm%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%3D%20m%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bi,%20m%29%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20m%20%20%23%20%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%E5%85%B6%E7%B4%A2%E5%BC%95%0A%20%20%20%20return%20-1%20%20%23%20%E6%9C%AA%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%20-1%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20target%20%3D%206%0A%20%20%20%20nums%20%3D%20%5B1,%203,%206,%208,%2012,%2015,%2023,%2026,%2031,%2035%5D%0A%0A%20%20%20%20%23%20%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%B7%A6%E9%97%AD%E5%8F%B3%E5%BC%80%E5%8C%BA%E9%97%B4%EF%BC%89%0A%20%20%20%20index%20%3D%20binary_search_lcro%28nums,%20target%29%0A%20%20%20%20print%28%22%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%206%20%E7%9A%84%E7%B4%A2%E5%BC%95%20%3D%20%22,%20index%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20binary_search_lcro%28nums%3A%20list%5Bint%5D,%20target%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%B7%A6%E9%97%AD%E5%8F%B3%E5%BC%80%E5%8C%BA%E9%97%B4%EF%BC%89%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%B7%A6%E9%97%AD%E5%8F%B3%E5%BC%80%E5%8C%BA%E9%97%B4%20%5B0,%20n%29%20%EF%BC%8C%E5%8D%B3%20i,%20j%20%E5%88%86%E5%88%AB%E6%8C%87%E5%90%91%E6%95%B0%E7%BB%84%E9%A6%96%E5%85%83%E7%B4%A0%E3%80%81%E5%B0%BE%E5%85%83%E7%B4%A0%2B1%0A%20%20%20%20i,%20j%20%3D%200,%20len%28nums%29%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%EF%BC%8C%E5%BD%93%E6%90%9C%E7%B4%A2%E5%8C%BA%E9%97%B4%E4%B8%BA%E7%A9%BA%E6%97%B6%E8%B7%B3%E5%87%BA%EF%BC%88%E5%BD%93%20i%20%3D%20j%20%E6%97%B6%E4%B8%BA%E7%A9%BA%EF%BC%89%0A%20%20%20%20while%20i%20%3C%20j%3A%0A%20%20%20%20%20%20%20%20m%20%3D%20%28i%20%2B%20j%29%20//%202%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%E7%B4%A2%E5%BC%95%20m%0A%20%20%20%20%20%20%20%20if%20nums%5Bm%5D%20%3C%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%3D%20m%20%2B%201%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bm%2B1,%20j%29%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20elif%20nums%5Bm%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%3D%20m%20%20%23%20%E6%AD%A4%E6%83%85%E5%86%B5%E8%AF%B4%E6%98%8E%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bi,%20m%29%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20m%20%20%23%20%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%E5%85%B6%E7%B4%A2%E5%BC%95%0A%20%20%20%20return%20-1%20%20%23%20%E6%9C%AA%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%20-1%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20target%20%3D%206%0A%20%20%20%20nums%20%3D%20%5B1,%203,%206,%208,%2012,%2015,%2023,%2026,%2031,%2035%5D%0A%0A%20%20%20%20%23%20%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%B7%A6%E9%97%AD%E5%8F%B3%E5%BC%80%E5%8C%BA%E9%97%B4%EF%BC%89%0A%20%20%20%20index%20%3D%20binary_search_lcro%28nums,%20target%29%0A%20%20%20%20print%28%22%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%206%20%E7%9A%84%E7%B4%A2%E5%BC%95%20%3D%20%22,%20index%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>

如圖 10-3 所示,在兩種區間表示下,二分搜尋演算法的初始化、迴圈條件和縮小區間操作皆有所不同。

由於“雙閉區間”表示中的左右邊界都被定義為閉區間,因此透過指標 i 和指標 j 縮小區間的操作也是對稱的。這樣更不容易出錯,因此一般建議採用“雙閉區間”的寫法

兩種區間定義{ class="animation-figure" }

圖 10-3   兩種區間定義

10.1.2   優點與侷限性

二分搜尋在時間和空間方面都有較好的效能。

  • 二分搜尋的時間效率高。在大資料量下,對數階的時間複雜度具有顯著優勢。例如,當資料大小 n = 2^{20} 時,線性查詢需要 2^{20} = 1048576 輪迴圈,而二分搜尋僅需 \log_2 2^{20} = 20 輪迴圈。
  • 二分搜尋無須額外空間。相較於需要藉助額外空間的搜尋演算法(例如雜湊查詢),二分搜尋更加節省空間。

然而,二分搜尋並非適用於所有情況,主要有以下原因。

  • 二分搜尋僅適用於有序資料。若輸入資料無序,為了使用二分搜尋而專門進行排序,得不償失。因為排序演算法的時間複雜度通常為 O(n \log n) ,比線性查詢和二分搜尋都更高。對於頻繁插入元素的場景,為保持陣列有序性,需要將元素插入到特定位置,時間複雜度為 O(n) ,也是非常昂貴的。
  • 二分搜尋僅適用於陣列。二分搜尋需要跳躍式(非連續地)訪問元素,而在鏈結串列中執行跳躍式訪問的效率較低,因此不適合應用在鏈結串列或基於鏈結串列實現的資料結構。
  • 小資料量下,線性查詢效能更佳。線上性查詢中,每輪只需 1 次判斷操作;而在二分搜尋中,需要 1 次加法、1 次除法、1 ~ 3 次判斷操作、1 次加法(減法),共 4 ~ 6 個單元操作;因此,當資料量 n 較小時,線性查詢反而比二分搜尋更快。