mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-29 10:16:30 +08:00
2384 lines
73 KiB
Markdown
Executable file
2384 lines
73 KiB
Markdown
Executable file
---
|
||
comments: true
|
||
---
|
||
|
||
# 2.4 空間複雜度
|
||
|
||
<u>空間複雜度(space complexity)</u>用於衡量演算法佔用記憶體空間隨著資料量變大時的增長趨勢。這個概念與時間複雜度非常類似,只需將“執行時間”替換為“佔用記憶體空間”。
|
||
|
||
## 2.4.1 演算法相關空間
|
||
|
||
演算法在執行過程中使用的記憶體空間主要包括以下幾種。
|
||
|
||
- **輸入空間**:用於儲存演算法的輸入資料。
|
||
- **暫存空間**:用於儲存演算法在執行過程中的變數、物件、函式上下文等資料。
|
||
- **輸出空間**:用於儲存演算法的輸出資料。
|
||
|
||
一般情況下,空間複雜度的統計範圍是“暫存空間”加上“輸出空間”。
|
||
|
||
暫存空間可以進一步劃分為三個部分。
|
||
|
||
- **暫存資料**:用於儲存演算法執行過程中的各種常數、變數、物件等。
|
||
- **堆疊幀空間**:用於儲存呼叫函式的上下文資料。系統在每次呼叫函式時都會在堆疊頂部建立一個堆疊幀,函式返回後,堆疊幀空間會被釋放。
|
||
- **指令空間**:用於儲存編譯後的程式指令,在實際統計中通常忽略不計。
|
||
|
||
在分析一段程式的空間複雜度時,**我們通常統計暫存資料、堆疊幀空間和輸出資料三部分**,如圖 2-15 所示。
|
||
|
||
![演算法使用的相關空間](space_complexity.assets/space_types.png){ class="animation-figure" }
|
||
|
||
<p align="center"> 圖 2-15 演算法使用的相關空間 </p>
|
||
|
||
相關程式碼如下:
|
||
|
||
=== "Python"
|
||
|
||
```python title=""
|
||
class Node:
|
||
"""類別"""
|
||
def __init__(self, x: int):
|
||
self.val: int = x # 節點值
|
||
self.next: Node | None = None # 指向下一節點的引用
|
||
|
||
def function() -> int:
|
||
"""函式"""
|
||
# 執行某些操作...
|
||
return 0
|
||
|
||
def algorithm(n) -> int: # 輸入資料
|
||
A = 0 # 暫存資料(常數,一般用大寫字母表示)
|
||
b = 0 # 暫存資料(變數)
|
||
node = Node(0) # 暫存資料(物件)
|
||
c = function() # 堆疊幀空間(呼叫函式)
|
||
return A + b + c # 輸出資料
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title=""
|
||
/* 結構體 */
|
||
struct Node {
|
||
int val;
|
||
Node *next;
|
||
Node(int x) : val(x), next(nullptr) {}
|
||
};
|
||
|
||
/* 函式 */
|
||
int func() {
|
||
// 執行某些操作...
|
||
return 0;
|
||
}
|
||
|
||
int algorithm(int n) { // 輸入資料
|
||
const int a = 0; // 暫存資料(常數)
|
||
int b = 0; // 暫存資料(變數)
|
||
Node* node = new Node(0); // 暫存資料(物件)
|
||
int c = func(); // 堆疊幀空間(呼叫函式)
|
||
return a + b + c; // 輸出資料
|
||
}
|
||
```
|
||
|
||
=== "Java"
|
||
|
||
```java title=""
|
||
/* 類別 */
|
||
class Node {
|
||
int val;
|
||
Node next;
|
||
Node(int x) { val = x; }
|
||
}
|
||
|
||
/* 函式 */
|
||
int function() {
|
||
// 執行某些操作...
|
||
return 0;
|
||
}
|
||
|
||
int algorithm(int n) { // 輸入資料
|
||
final int a = 0; // 暫存資料(常數)
|
||
int b = 0; // 暫存資料(變數)
|
||
Node node = new Node(0); // 暫存資料(物件)
|
||
int c = function(); // 堆疊幀空間(呼叫函式)
|
||
return a + b + c; // 輸出資料
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title=""
|
||
/* 類別 */
|
||
class Node(int x) {
|
||
int val = x;
|
||
Node next;
|
||
}
|
||
|
||
/* 函式 */
|
||
int Function() {
|
||
// 執行某些操作...
|
||
return 0;
|
||
}
|
||
|
||
int Algorithm(int n) { // 輸入資料
|
||
const int a = 0; // 暫存資料(常數)
|
||
int b = 0; // 暫存資料(變數)
|
||
Node node = new(0); // 暫存資料(物件)
|
||
int c = Function(); // 堆疊幀空間(呼叫函式)
|
||
return a + b + c; // 輸出資料
|
||
}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title=""
|
||
/* 結構體 */
|
||
type node struct {
|
||
val int
|
||
next *node
|
||
}
|
||
|
||
/* 建立 node 結構體 */
|
||
func newNode(val int) *node {
|
||
return &node{val: val}
|
||
}
|
||
|
||
/* 函式 */
|
||
func function() int {
|
||
// 執行某些操作...
|
||
return 0
|
||
}
|
||
|
||
func algorithm(n int) int { // 輸入資料
|
||
const a = 0 // 暫存資料(常數)
|
||
b := 0 // 暫存資料(變數)
|
||
newNode(0) // 暫存資料(物件)
|
||
c := function() // 堆疊幀空間(呼叫函式)
|
||
return a + b + c // 輸出資料
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title=""
|
||
/* 類別 */
|
||
class Node {
|
||
var val: Int
|
||
var next: Node?
|
||
|
||
init(x: Int) {
|
||
val = x
|
||
}
|
||
}
|
||
|
||
/* 函式 */
|
||
func function() -> Int {
|
||
// 執行某些操作...
|
||
return 0
|
||
}
|
||
|
||
func algorithm(n: Int) -> Int { // 輸入資料
|
||
let a = 0 // 暫存資料(常數)
|
||
var b = 0 // 暫存資料(變數)
|
||
let node = Node(x: 0) // 暫存資料(物件)
|
||
let c = function() // 堆疊幀空間(呼叫函式)
|
||
return a + b + c // 輸出資料
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title=""
|
||
/* 類別 */
|
||
class Node {
|
||
val;
|
||
next;
|
||
constructor(val) {
|
||
this.val = val === undefined ? 0 : val; // 節點值
|
||
this.next = null; // 指向下一節點的引用
|
||
}
|
||
}
|
||
|
||
/* 函式 */
|
||
function constFunc() {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
|
||
function algorithm(n) { // 輸入資料
|
||
const a = 0; // 暫存資料(常數)
|
||
let b = 0; // 暫存資料(變數)
|
||
const node = new Node(0); // 暫存資料(物件)
|
||
const c = constFunc(); // 堆疊幀空間(呼叫函式)
|
||
return a + b + c; // 輸出資料
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title=""
|
||
/* 類別 */
|
||
class Node {
|
||
val: number;
|
||
next: Node | null;
|
||
constructor(val?: number) {
|
||
this.val = val === undefined ? 0 : val; // 節點值
|
||
this.next = null; // 指向下一節點的引用
|
||
}
|
||
}
|
||
|
||
/* 函式 */
|
||
function constFunc(): number {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
|
||
function algorithm(n: number): number { // 輸入資料
|
||
const a = 0; // 暫存資料(常數)
|
||
let b = 0; // 暫存資料(變數)
|
||
const node = new Node(0); // 暫存資料(物件)
|
||
const c = constFunc(); // 堆疊幀空間(呼叫函式)
|
||
return a + b + c; // 輸出資料
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title=""
|
||
/* 類別 */
|
||
class Node {
|
||
int val;
|
||
Node next;
|
||
Node(this.val, [this.next]);
|
||
}
|
||
|
||
/* 函式 */
|
||
int function() {
|
||
// 執行某些操作...
|
||
return 0;
|
||
}
|
||
|
||
int algorithm(int n) { // 輸入資料
|
||
const int a = 0; // 暫存資料(常數)
|
||
int b = 0; // 暫存資料(變數)
|
||
Node node = Node(0); // 暫存資料(物件)
|
||
int c = function(); // 堆疊幀空間(呼叫函式)
|
||
return a + b + c; // 輸出資料
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title=""
|
||
use std::rc::Rc;
|
||
use std::cell::RefCell;
|
||
|
||
/* 結構體 */
|
||
struct Node {
|
||
val: i32,
|
||
next: Option<Rc<RefCell<Node>>>,
|
||
}
|
||
|
||
/* 建立 Node 結構體 */
|
||
impl Node {
|
||
fn new(val: i32) -> Self {
|
||
Self { val: val, next: None }
|
||
}
|
||
}
|
||
|
||
/* 函式 */
|
||
fn function() -> i32 {
|
||
// 執行某些操作...
|
||
return 0;
|
||
}
|
||
|
||
fn algorithm(n: i32) -> i32 { // 輸入資料
|
||
const a: i32 = 0; // 暫存資料(常數)
|
||
let mut b = 0; // 暫存資料(變數)
|
||
let node = Node::new(0); // 暫存資料(物件)
|
||
let c = function(); // 堆疊幀空間(呼叫函式)
|
||
return a + b + c; // 輸出資料
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title=""
|
||
/* 函式 */
|
||
int func() {
|
||
// 執行某些操作...
|
||
return 0;
|
||
}
|
||
|
||
int algorithm(int n) { // 輸入資料
|
||
const int a = 0; // 暫存資料(常數)
|
||
int b = 0; // 暫存資料(變數)
|
||
int c = func(); // 堆疊幀空間(呼叫函式)
|
||
return a + b + c; // 輸出資料
|
||
}
|
||
```
|
||
|
||
=== "Kotlin"
|
||
|
||
```kotlin title=""
|
||
/* 類別 */
|
||
class Node(var _val: Int) {
|
||
var next: Node? = null
|
||
}
|
||
|
||
/* 函式 */
|
||
fun function(): Int {
|
||
// 執行某些操作...
|
||
return 0
|
||
}
|
||
|
||
fun algorithm(n: Int): Int { // 輸入資料
|
||
val a = 0 // 暫存資料(常數)
|
||
var b = 0 // 暫存資料(變數)
|
||
val node = Node(0) // 暫存資料(物件)
|
||
val c = function() // 堆疊幀空間(呼叫函式)
|
||
return a + b + c // 輸出資料
|
||
}
|
||
```
|
||
|
||
=== "Ruby"
|
||
|
||
```ruby title=""
|
||
### 類別 ###
|
||
class Node
|
||
attr_accessor :val # 節點值
|
||
attr_accessor :next # 指向下一節點的引用
|
||
|
||
def initialize(x)
|
||
@val = x
|
||
end
|
||
end
|
||
|
||
### 函式 ###
|
||
def function
|
||
# 執行某些操作...
|
||
0
|
||
end
|
||
|
||
### 演算法 ###
|
||
def algorithm(n) # 輸入資料
|
||
a = 0 # 暫存資料(常數)
|
||
b = 0 # 暫存資料(變數)
|
||
node = Node.new(0) # 暫存資料(物件)
|
||
c = function # 堆疊幀空間(呼叫函式)
|
||
a + b + c # 輸出資料
|
||
end
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title=""
|
||
|
||
```
|
||
|
||
## 2.4.2 推算方法
|
||
|
||
空間複雜度的推算方法與時間複雜度大致相同,只需將統計物件從“操作數量”轉為“使用空間大小”。
|
||
|
||
而與時間複雜度不同的是,**我們通常只關注最差空間複雜度**。這是因為記憶體空間是一項硬性要求,我們必須確保在所有輸入資料下都有足夠的記憶體空間預留。
|
||
|
||
觀察以下程式碼,最差空間複雜度中的“最差”有兩層含義。
|
||
|
||
1. **以最差輸入資料為準**:當 $n < 10$ 時,空間複雜度為 $O(1)$ ;但當 $n > 10$ 時,初始化的陣列 `nums` 佔用 $O(n)$ 空間,因此最差空間複雜度為 $O(n)$ 。
|
||
2. **以演算法執行中的峰值記憶體為準**:例如,程式在執行最後一行之前,佔用 $O(1)$ 空間;當初始化陣列 `nums` 時,程式佔用 $O(n)$ 空間,因此最差空間複雜度為 $O(n)$ 。
|
||
|
||
=== "Python"
|
||
|
||
```python title=""
|
||
def algorithm(n: int):
|
||
a = 0 # O(1)
|
||
b = [0] * 10000 # O(1)
|
||
if n > 10:
|
||
nums = [0] * n # O(n)
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title=""
|
||
void algorithm(int n) {
|
||
int a = 0; // O(1)
|
||
vector<int> b(10000); // O(1)
|
||
if (n > 10)
|
||
vector<int> nums(n); // O(n)
|
||
}
|
||
```
|
||
|
||
=== "Java"
|
||
|
||
```java title=""
|
||
void algorithm(int n) {
|
||
int a = 0; // O(1)
|
||
int[] b = new int[10000]; // O(1)
|
||
if (n > 10)
|
||
int[] nums = new int[n]; // O(n)
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title=""
|
||
void Algorithm(int n) {
|
||
int a = 0; // O(1)
|
||
int[] b = new int[10000]; // O(1)
|
||
if (n > 10) {
|
||
int[] nums = new int[n]; // O(n)
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title=""
|
||
func algorithm(n int) {
|
||
a := 0 // O(1)
|
||
b := make([]int, 10000) // O(1)
|
||
var nums []int
|
||
if n > 10 {
|
||
nums := make([]int, n) // O(n)
|
||
}
|
||
fmt.Println(a, b, nums)
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title=""
|
||
func algorithm(n: Int) {
|
||
let a = 0 // O(1)
|
||
let b = Array(repeating: 0, count: 10000) // O(1)
|
||
if n > 10 {
|
||
let nums = Array(repeating: 0, count: n) // O(n)
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title=""
|
||
function algorithm(n) {
|
||
const a = 0; // O(1)
|
||
const b = new Array(10000); // O(1)
|
||
if (n > 10) {
|
||
const nums = new Array(n); // O(n)
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title=""
|
||
function algorithm(n: number): void {
|
||
const a = 0; // O(1)
|
||
const b = new Array(10000); // O(1)
|
||
if (n > 10) {
|
||
const nums = new Array(n); // O(n)
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title=""
|
||
void algorithm(int n) {
|
||
int a = 0; // O(1)
|
||
List<int> b = List.filled(10000, 0); // O(1)
|
||
if (n > 10) {
|
||
List<int> nums = List.filled(n, 0); // O(n)
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title=""
|
||
fn algorithm(n: i32) {
|
||
let a = 0; // O(1)
|
||
let b = [0; 10000]; // O(1)
|
||
if n > 10 {
|
||
let nums = vec![0; n as usize]; // O(n)
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title=""
|
||
void algorithm(int n) {
|
||
int a = 0; // O(1)
|
||
int b[10000]; // O(1)
|
||
if (n > 10)
|
||
int nums[n] = {0}; // O(n)
|
||
}
|
||
```
|
||
|
||
=== "Kotlin"
|
||
|
||
```kotlin title=""
|
||
fun algorithm(n: Int) {
|
||
val a = 0 // O(1)
|
||
val b = IntArray(10000) // O(1)
|
||
if (n > 10) {
|
||
val nums = IntArray(n) // O(n)
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Ruby"
|
||
|
||
```ruby title=""
|
||
def algorithm(n)
|
||
a = 0 # O(1)
|
||
b = Array.new(10000) # O(1)
|
||
nums = Array.new(n) if n > 10 # O(n)
|
||
end
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title=""
|
||
|
||
```
|
||
|
||
**在遞迴函式中,需要注意統計堆疊幀空間**。觀察以下程式碼:
|
||
|
||
=== "Python"
|
||
|
||
```python title=""
|
||
def function() -> int:
|
||
# 執行某些操作
|
||
return 0
|
||
|
||
def loop(n: int):
|
||
"""迴圈的空間複雜度為 O(1)"""
|
||
for _ in range(n):
|
||
function()
|
||
|
||
def recur(n: int):
|
||
"""遞迴的空間複雜度為 O(n)"""
|
||
if n == 1:
|
||
return
|
||
return recur(n - 1)
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title=""
|
||
int func() {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
/* 迴圈的空間複雜度為 O(1) */
|
||
void loop(int n) {
|
||
for (int i = 0; i < n; i++) {
|
||
func();
|
||
}
|
||
}
|
||
/* 遞迴的空間複雜度為 O(n) */
|
||
void recur(int n) {
|
||
if (n == 1) return;
|
||
return recur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "Java"
|
||
|
||
```java title=""
|
||
int function() {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
/* 迴圈的空間複雜度為 O(1) */
|
||
void loop(int n) {
|
||
for (int i = 0; i < n; i++) {
|
||
function();
|
||
}
|
||
}
|
||
/* 遞迴的空間複雜度為 O(n) */
|
||
void recur(int n) {
|
||
if (n == 1) return;
|
||
return recur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title=""
|
||
int Function() {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
/* 迴圈的空間複雜度為 O(1) */
|
||
void Loop(int n) {
|
||
for (int i = 0; i < n; i++) {
|
||
Function();
|
||
}
|
||
}
|
||
/* 遞迴的空間複雜度為 O(n) */
|
||
int Recur(int n) {
|
||
if (n == 1) return 1;
|
||
return Recur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title=""
|
||
func function() int {
|
||
// 執行某些操作
|
||
return 0
|
||
}
|
||
|
||
/* 迴圈的空間複雜度為 O(1) */
|
||
func loop(n int) {
|
||
for i := 0; i < n; i++ {
|
||
function()
|
||
}
|
||
}
|
||
|
||
/* 遞迴的空間複雜度為 O(n) */
|
||
func recur(n int) {
|
||
if n == 1 {
|
||
return
|
||
}
|
||
recur(n - 1)
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title=""
|
||
@discardableResult
|
||
func function() -> Int {
|
||
// 執行某些操作
|
||
return 0
|
||
}
|
||
|
||
/* 迴圈的空間複雜度為 O(1) */
|
||
func loop(n: Int) {
|
||
for _ in 0 ..< n {
|
||
function()
|
||
}
|
||
}
|
||
|
||
/* 遞迴的空間複雜度為 O(n) */
|
||
func recur(n: Int) {
|
||
if n == 1 {
|
||
return
|
||
}
|
||
recur(n: n - 1)
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title=""
|
||
function constFunc() {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
/* 迴圈的空間複雜度為 O(1) */
|
||
function loop(n) {
|
||
for (let i = 0; i < n; i++) {
|
||
constFunc();
|
||
}
|
||
}
|
||
/* 遞迴的空間複雜度為 O(n) */
|
||
function recur(n) {
|
||
if (n === 1) return;
|
||
return recur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title=""
|
||
function constFunc(): number {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
/* 迴圈的空間複雜度為 O(1) */
|
||
function loop(n: number): void {
|
||
for (let i = 0; i < n; i++) {
|
||
constFunc();
|
||
}
|
||
}
|
||
/* 遞迴的空間複雜度為 O(n) */
|
||
function recur(n: number): void {
|
||
if (n === 1) return;
|
||
return recur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title=""
|
||
int function() {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
/* 迴圈的空間複雜度為 O(1) */
|
||
void loop(int n) {
|
||
for (int i = 0; i < n; i++) {
|
||
function();
|
||
}
|
||
}
|
||
/* 遞迴的空間複雜度為 O(n) */
|
||
void recur(int n) {
|
||
if (n == 1) return;
|
||
return recur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title=""
|
||
fn function() -> i32 {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
/* 迴圈的空間複雜度為 O(1) */
|
||
fn loop(n: i32) {
|
||
for i in 0..n {
|
||
function();
|
||
}
|
||
}
|
||
/* 遞迴的空間複雜度為 O(n) */
|
||
fn recur(n: i32) {
|
||
if n == 1 {
|
||
return;
|
||
}
|
||
recur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title=""
|
||
int func() {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
/* 迴圈的空間複雜度為 O(1) */
|
||
void loop(int n) {
|
||
for (int i = 0; i < n; i++) {
|
||
func();
|
||
}
|
||
}
|
||
/* 遞迴的空間複雜度為 O(n) */
|
||
void recur(int n) {
|
||
if (n == 1) return;
|
||
return recur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "Kotlin"
|
||
|
||
```kotlin title=""
|
||
fun function(): Int {
|
||
// 執行某些操作
|
||
return 0
|
||
}
|
||
/* 迴圈的空間複雜度為 O(1) */
|
||
fun loop(n: Int) {
|
||
for (i in 0..<n) {
|
||
function()
|
||
}
|
||
}
|
||
/* 遞迴的空間複雜度為 O(n) */
|
||
fun recur(n: Int) {
|
||
if (n == 1) return
|
||
return recur(n - 1)
|
||
}
|
||
```
|
||
|
||
=== "Ruby"
|
||
|
||
```ruby title=""
|
||
def function
|
||
# 執行某些操作
|
||
0
|
||
end
|
||
|
||
### 迴圈的空間複雜度為 O(1) ###
|
||
def loop(n)
|
||
(0...n).each { function }
|
||
end
|
||
|
||
### 遞迴的空間複雜度為 O(n) ###
|
||
def recur(n)
|
||
return if n == 1
|
||
recur(n - 1)
|
||
end
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title=""
|
||
|
||
```
|
||
|
||
函式 `loop()` 和 `recur()` 的時間複雜度都為 $O(n)$ ,但空間複雜度不同。
|
||
|
||
- 函式 `loop()` 在迴圈中呼叫了 $n$ 次 `function()` ,每輪中的 `function()` 都返回並釋放了堆疊幀空間,因此空間複雜度仍為 $O(1)$ 。
|
||
- 遞迴函式 `recur()` 在執行過程中會同時存在 $n$ 個未返回的 `recur()` ,從而佔用 $O(n)$ 的堆疊幀空間。
|
||
|
||
## 2.4.3 常見型別
|
||
|
||
設輸入資料大小為 $n$ ,圖 2-16 展示了常見的空間複雜度型別(從低到高排列)。
|
||
|
||
$$
|
||
\begin{aligned}
|
||
O(1) < O(\log n) < O(n) < O(n^2) < O(2^n) \newline
|
||
\text{常數階} < \text{對數階} < \text{線性階} < \text{平方階} < \text{指數階}
|
||
\end{aligned}
|
||
$$
|
||
|
||
![常見的空間複雜度型別](space_complexity.assets/space_complexity_common_types.png){ class="animation-figure" }
|
||
|
||
<p align="center"> 圖 2-16 常見的空間複雜度型別 </p>
|
||
|
||
### 1. 常數階 $O(1)$ {data-toc-label="1. 常數階"}
|
||
|
||
常數階常見於數量與輸入資料大小 $n$ 無關的常數、變數、物件。
|
||
|
||
需要注意的是,在迴圈中初始化變數或呼叫函式而佔用的記憶體,在進入下一迴圈後就會被釋放,因此不會累積佔用空間,空間複雜度仍為 $O(1)$ :
|
||
|
||
=== "Python"
|
||
|
||
```python title="space_complexity.py"
|
||
def function() -> int:
|
||
"""函式"""
|
||
# 執行某些操作
|
||
return 0
|
||
|
||
def constant(n: int):
|
||
"""常數階"""
|
||
# 常數、變數、物件佔用 O(1) 空間
|
||
a = 0
|
||
nums = [0] * 10000
|
||
node = ListNode(0)
|
||
# 迴圈中的變數佔用 O(1) 空間
|
||
for _ in range(n):
|
||
c = 0
|
||
# 迴圈中的函式佔用 O(1) 空間
|
||
for _ in range(n):
|
||
function()
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="space_complexity.cpp"
|
||
/* 函式 */
|
||
int func() {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
|
||
/* 常數階 */
|
||
void constant(int n) {
|
||
// 常數、變數、物件佔用 O(1) 空間
|
||
const int a = 0;
|
||
int b = 0;
|
||
vector<int> nums(10000);
|
||
ListNode node(0);
|
||
// 迴圈中的變數佔用 O(1) 空間
|
||
for (int i = 0; i < n; i++) {
|
||
int c = 0;
|
||
}
|
||
// 迴圈中的函式佔用 O(1) 空間
|
||
for (int i = 0; i < n; i++) {
|
||
func();
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Java"
|
||
|
||
```java title="space_complexity.java"
|
||
/* 函式 */
|
||
int function() {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
|
||
/* 常數階 */
|
||
void constant(int n) {
|
||
// 常數、變數、物件佔用 O(1) 空間
|
||
final int a = 0;
|
||
int b = 0;
|
||
int[] nums = new int[10000];
|
||
ListNode node = new ListNode(0);
|
||
// 迴圈中的變數佔用 O(1) 空間
|
||
for (int i = 0; i < n; i++) {
|
||
int c = 0;
|
||
}
|
||
// 迴圈中的函式佔用 O(1) 空間
|
||
for (int i = 0; i < n; i++) {
|
||
function();
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="space_complexity.cs"
|
||
/* 函式 */
|
||
int Function() {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
|
||
/* 常數階 */
|
||
void Constant(int n) {
|
||
// 常數、變數、物件佔用 O(1) 空間
|
||
int a = 0;
|
||
int b = 0;
|
||
int[] nums = new int[10000];
|
||
ListNode node = new(0);
|
||
// 迴圈中的變數佔用 O(1) 空間
|
||
for (int i = 0; i < n; i++) {
|
||
int c = 0;
|
||
}
|
||
// 迴圈中的函式佔用 O(1) 空間
|
||
for (int i = 0; i < n; i++) {
|
||
Function();
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="space_complexity.go"
|
||
/* 函式 */
|
||
func function() int {
|
||
// 執行某些操作...
|
||
return 0
|
||
}
|
||
|
||
/* 常數階 */
|
||
func spaceConstant(n int) {
|
||
// 常數、變數、物件佔用 O(1) 空間
|
||
const a = 0
|
||
b := 0
|
||
nums := make([]int, 10000)
|
||
node := newNode(0)
|
||
// 迴圈中的變數佔用 O(1) 空間
|
||
var c int
|
||
for i := 0; i < n; i++ {
|
||
c = 0
|
||
}
|
||
// 迴圈中的函式佔用 O(1) 空間
|
||
for i := 0; i < n; i++ {
|
||
function()
|
||
}
|
||
b += 0
|
||
c += 0
|
||
nums[0] = 0
|
||
node.val = 0
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="space_complexity.swift"
|
||
/* 函式 */
|
||
@discardableResult
|
||
func function() -> Int {
|
||
// 執行某些操作
|
||
return 0
|
||
}
|
||
|
||
/* 常數階 */
|
||
func constant(n: Int) {
|
||
// 常數、變數、物件佔用 O(1) 空間
|
||
let a = 0
|
||
var b = 0
|
||
let nums = Array(repeating: 0, count: 10000)
|
||
let node = ListNode(x: 0)
|
||
// 迴圈中的變數佔用 O(1) 空間
|
||
for _ in 0 ..< n {
|
||
let c = 0
|
||
}
|
||
// 迴圈中的函式佔用 O(1) 空間
|
||
for _ in 0 ..< n {
|
||
function()
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title="space_complexity.js"
|
||
/* 函式 */
|
||
function constFunc() {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
|
||
/* 常數階 */
|
||
function constant(n) {
|
||
// 常數、變數、物件佔用 O(1) 空間
|
||
const a = 0;
|
||
const b = 0;
|
||
const nums = new Array(10000);
|
||
const node = new ListNode(0);
|
||
// 迴圈中的變數佔用 O(1) 空間
|
||
for (let i = 0; i < n; i++) {
|
||
const c = 0;
|
||
}
|
||
// 迴圈中的函式佔用 O(1) 空間
|
||
for (let i = 0; i < n; i++) {
|
||
constFunc();
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title="space_complexity.ts"
|
||
/* 函式 */
|
||
function constFunc(): number {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
|
||
/* 常數階 */
|
||
function constant(n: number): void {
|
||
// 常數、變數、物件佔用 O(1) 空間
|
||
const a = 0;
|
||
const b = 0;
|
||
const nums = new Array(10000);
|
||
const node = new ListNode(0);
|
||
// 迴圈中的變數佔用 O(1) 空間
|
||
for (let i = 0; i < n; i++) {
|
||
const c = 0;
|
||
}
|
||
// 迴圈中的函式佔用 O(1) 空間
|
||
for (let i = 0; i < n; i++) {
|
||
constFunc();
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="space_complexity.dart"
|
||
/* 函式 */
|
||
int function() {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
|
||
/* 常數階 */
|
||
void constant(int n) {
|
||
// 常數、變數、物件佔用 O(1) 空間
|
||
final int a = 0;
|
||
int b = 0;
|
||
List<int> nums = List.filled(10000, 0);
|
||
ListNode node = ListNode(0);
|
||
// 迴圈中的變數佔用 O(1) 空間
|
||
for (var i = 0; i < n; i++) {
|
||
int c = 0;
|
||
}
|
||
// 迴圈中的函式佔用 O(1) 空間
|
||
for (var i = 0; i < n; i++) {
|
||
function();
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title="space_complexity.rs"
|
||
/* 函式 */
|
||
fn function() -> i32 {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
|
||
/* 常數階 */
|
||
#[allow(unused)]
|
||
fn constant(n: i32) {
|
||
// 常數、變數、物件佔用 O(1) 空間
|
||
const A: i32 = 0;
|
||
let b = 0;
|
||
let nums = vec![0; 10000];
|
||
let node = ListNode::new(0);
|
||
// 迴圈中的變數佔用 O(1) 空間
|
||
for i in 0..n {
|
||
let c = 0;
|
||
}
|
||
// 迴圈中的函式佔用 O(1) 空間
|
||
for i in 0..n {
|
||
function();
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="space_complexity.c"
|
||
/* 函式 */
|
||
int func() {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
|
||
/* 常數階 */
|
||
void constant(int n) {
|
||
// 常數、變數、物件佔用 O(1) 空間
|
||
const int a = 0;
|
||
int b = 0;
|
||
int nums[1000];
|
||
ListNode *node = newListNode(0);
|
||
free(node);
|
||
// 迴圈中的變數佔用 O(1) 空間
|
||
for (int i = 0; i < n; i++) {
|
||
int c = 0;
|
||
}
|
||
// 迴圈中的函式佔用 O(1) 空間
|
||
for (int i = 0; i < n; i++) {
|
||
func();
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Kotlin"
|
||
|
||
```kotlin title="space_complexity.kt"
|
||
/* 函式 */
|
||
fun function(): Int {
|
||
// 執行某些操作
|
||
return 0
|
||
}
|
||
|
||
/* 常數階 */
|
||
fun constant(n: Int) {
|
||
// 常數、變數、物件佔用 O(1) 空間
|
||
val a = 0
|
||
var b = 0
|
||
val nums = Array(10000) { 0 }
|
||
val node = ListNode(0)
|
||
// 迴圈中的變數佔用 O(1) 空間
|
||
for (i in 0..<n) {
|
||
val c = 0
|
||
}
|
||
// 迴圈中的函式佔用 O(1) 空間
|
||
for (i in 0..<n) {
|
||
function()
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Ruby"
|
||
|
||
```ruby title="space_complexity.rb"
|
||
### 函式 ###
|
||
def function
|
||
# 執行某些操作
|
||
0
|
||
end
|
||
|
||
### 常數階 ###
|
||
def constant(n)
|
||
# 常數、變數、物件佔用 O(1) 空間
|
||
a = 0
|
||
nums = [0] * 10000
|
||
node = ListNode.new
|
||
|
||
# 迴圈中的變數佔用 O(1) 空間
|
||
(0...n).each { c = 0 }
|
||
# 迴圈中的函式佔用 O(1) 空間
|
||
(0...n).each { function }
|
||
end
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="space_complexity.zig"
|
||
// 函式
|
||
fn function() i32 {
|
||
// 執行某些操作
|
||
return 0;
|
||
}
|
||
|
||
// 常數階
|
||
fn constant(n: i32) void {
|
||
// 常數、變數、物件佔用 O(1) 空間
|
||
const a: i32 = 0;
|
||
var b: i32 = 0;
|
||
var nums = [_]i32{0}**10000;
|
||
var node = inc.ListNode(i32){.val = 0};
|
||
var i: i32 = 0;
|
||
// 迴圈中的變數佔用 O(1) 空間
|
||
while (i < n) : (i += 1) {
|
||
var c: i32 = 0;
|
||
_ = c;
|
||
}
|
||
// 迴圈中的函式佔用 O(1) 空間
|
||
i = 0;
|
||
while (i < n) : (i += 1) {
|
||
_ = function();
|
||
}
|
||
_ = a;
|
||
_ = b;
|
||
_ = nums;
|
||
_ = node;
|
||
}
|
||
```
|
||
|
||
??? pythontutor "視覺化執行"
|
||
|
||
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=class%20ListNode%3A%0A%20%20%20%20%22%22%22%E9%93%BE%E8%A1%A8%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.next%3A%20ListNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%90%8E%E7%BB%A7%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0Adef%20function%28%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%87%BD%E6%95%B0%22%22%22%0A%20%20%20%20%23%20%E6%89%A7%E8%A1%8C%E6%9F%90%E4%BA%9B%E6%93%8D%E4%BD%9C%0A%20%20%20%20return%200%0A%0Adef%20constant%28n%3A%20int%29%3A%0A%20%20%20%20%22%22%22%E5%B8%B8%E6%95%B0%E9%98%B6%22%22%22%0A%20%20%20%20%23%20%E5%B8%B8%E9%87%8F%E3%80%81%E5%8F%98%E9%87%8F%E3%80%81%E5%AF%B9%E8%B1%A1%E5%8D%A0%E7%94%A8%20O%281%29%20%E7%A9%BA%E9%97%B4%0A%20%20%20%20a%20%3D%200%0A%20%20%20%20nums%20%3D%20%5B0%5D%20*%2010%0A%20%20%20%20node%20%3D%20ListNode%280%29%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%E4%B8%AD%E7%9A%84%E5%8F%98%E9%87%8F%E5%8D%A0%E7%94%A8%20O%281%29%20%E7%A9%BA%E9%97%B4%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20c%20%3D%200%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%E4%B8%AD%E7%9A%84%E5%87%BD%E6%95%B0%E5%8D%A0%E7%94%A8%20O%281%29%20%E7%A9%BA%E9%97%B4%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20function%28%29%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%205%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20%23%20%E5%B8%B8%E6%95%B0%E9%98%B6%0A%20%20%20%20constant%28n%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=class%20ListNode%3A%0A%20%20%20%20%22%22%22%E9%93%BE%E8%A1%A8%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.next%3A%20ListNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%90%8E%E7%BB%A7%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0Adef%20function%28%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%87%BD%E6%95%B0%22%22%22%0A%20%20%20%20%23%20%E6%89%A7%E8%A1%8C%E6%9F%90%E4%BA%9B%E6%93%8D%E4%BD%9C%0A%20%20%20%20return%200%0A%0Adef%20constant%28n%3A%20int%29%3A%0A%20%20%20%20%22%22%22%E5%B8%B8%E6%95%B0%E9%98%B6%22%22%22%0A%20%20%20%20%23%20%E5%B8%B8%E9%87%8F%E3%80%81%E5%8F%98%E9%87%8F%E3%80%81%E5%AF%B9%E8%B1%A1%E5%8D%A0%E7%94%A8%20O%281%29%20%E7%A9%BA%E9%97%B4%0A%20%20%20%20a%20%3D%200%0A%20%20%20%20nums%20%3D%20%5B0%5D%20*%2010%0A%20%20%20%20node%20%3D%20ListNode%280%29%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%E4%B8%AD%E7%9A%84%E5%8F%98%E9%87%8F%E5%8D%A0%E7%94%A8%20O%281%29%20%E7%A9%BA%E9%97%B4%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20c%20%3D%200%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%E4%B8%AD%E7%9A%84%E5%87%BD%E6%95%B0%E5%8D%A0%E7%94%A8%20O%281%29%20%E7%A9%BA%E9%97%B4%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20function%28%29%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%205%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20%23%20%E5%B8%B8%E6%95%B0%E9%98%B6%0A%20%20%20%20constant%28n%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
||
|
||
### 2. 線性階 $O(n)$ {data-toc-label="2. 線性階"}
|
||
|
||
線性階常見於元素數量與 $n$ 成正比的陣列、鏈結串列、堆疊、佇列等:
|
||
|
||
=== "Python"
|
||
|
||
```python title="space_complexity.py"
|
||
def linear(n: int):
|
||
"""線性階"""
|
||
# 長度為 n 的串列佔用 O(n) 空間
|
||
nums = [0] * n
|
||
# 長度為 n 的雜湊表佔用 O(n) 空間
|
||
hmap = dict[int, str]()
|
||
for i in range(n):
|
||
hmap[i] = str(i)
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="space_complexity.cpp"
|
||
/* 線性階 */
|
||
void linear(int n) {
|
||
// 長度為 n 的陣列佔用 O(n) 空間
|
||
vector<int> nums(n);
|
||
// 長度為 n 的串列佔用 O(n) 空間
|
||
vector<ListNode> nodes;
|
||
for (int i = 0; i < n; i++) {
|
||
nodes.push_back(ListNode(i));
|
||
}
|
||
// 長度為 n 的雜湊表佔用 O(n) 空間
|
||
unordered_map<int, string> map;
|
||
for (int i = 0; i < n; i++) {
|
||
map[i] = to_string(i);
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Java"
|
||
|
||
```java title="space_complexity.java"
|
||
/* 線性階 */
|
||
void linear(int n) {
|
||
// 長度為 n 的陣列佔用 O(n) 空間
|
||
int[] nums = new int[n];
|
||
// 長度為 n 的串列佔用 O(n) 空間
|
||
List<ListNode> nodes = new ArrayList<>();
|
||
for (int i = 0; i < n; i++) {
|
||
nodes.add(new ListNode(i));
|
||
}
|
||
// 長度為 n 的雜湊表佔用 O(n) 空間
|
||
Map<Integer, String> map = new HashMap<>();
|
||
for (int i = 0; i < n; i++) {
|
||
map.put(i, String.valueOf(i));
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="space_complexity.cs"
|
||
/* 線性階 */
|
||
void Linear(int n) {
|
||
// 長度為 n 的陣列佔用 O(n) 空間
|
||
int[] nums = new int[n];
|
||
// 長度為 n 的串列佔用 O(n) 空間
|
||
List<ListNode> nodes = [];
|
||
for (int i = 0; i < n; i++) {
|
||
nodes.Add(new ListNode(i));
|
||
}
|
||
// 長度為 n 的雜湊表佔用 O(n) 空間
|
||
Dictionary<int, string> map = [];
|
||
for (int i = 0; i < n; i++) {
|
||
map.Add(i, i.ToString());
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="space_complexity.go"
|
||
/* 線性階 */
|
||
func spaceLinear(n int) {
|
||
// 長度為 n 的陣列佔用 O(n) 空間
|
||
_ = make([]int, n)
|
||
// 長度為 n 的串列佔用 O(n) 空間
|
||
var nodes []*node
|
||
for i := 0; i < n; i++ {
|
||
nodes = append(nodes, newNode(i))
|
||
}
|
||
// 長度為 n 的雜湊表佔用 O(n) 空間
|
||
m := make(map[int]string, n)
|
||
for i := 0; i < n; i++ {
|
||
m[i] = strconv.Itoa(i)
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="space_complexity.swift"
|
||
/* 線性階 */
|
||
func linear(n: Int) {
|
||
// 長度為 n 的陣列佔用 O(n) 空間
|
||
let nums = Array(repeating: 0, count: n)
|
||
// 長度為 n 的串列佔用 O(n) 空間
|
||
let nodes = (0 ..< n).map { ListNode(x: $0) }
|
||
// 長度為 n 的雜湊表佔用 O(n) 空間
|
||
let map = Dictionary(uniqueKeysWithValues: (0 ..< n).map { ($0, "\($0)") })
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title="space_complexity.js"
|
||
/* 線性階 */
|
||
function linear(n) {
|
||
// 長度為 n 的陣列佔用 O(n) 空間
|
||
const nums = new Array(n);
|
||
// 長度為 n 的串列佔用 O(n) 空間
|
||
const nodes = [];
|
||
for (let i = 0; i < n; i++) {
|
||
nodes.push(new ListNode(i));
|
||
}
|
||
// 長度為 n 的雜湊表佔用 O(n) 空間
|
||
const map = new Map();
|
||
for (let i = 0; i < n; i++) {
|
||
map.set(i, i.toString());
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title="space_complexity.ts"
|
||
/* 線性階 */
|
||
function linear(n: number): void {
|
||
// 長度為 n 的陣列佔用 O(n) 空間
|
||
const nums = new Array(n);
|
||
// 長度為 n 的串列佔用 O(n) 空間
|
||
const nodes: ListNode[] = [];
|
||
for (let i = 0; i < n; i++) {
|
||
nodes.push(new ListNode(i));
|
||
}
|
||
// 長度為 n 的雜湊表佔用 O(n) 空間
|
||
const map = new Map();
|
||
for (let i = 0; i < n; i++) {
|
||
map.set(i, i.toString());
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="space_complexity.dart"
|
||
/* 線性階 */
|
||
void linear(int n) {
|
||
// 長度為 n 的陣列佔用 O(n) 空間
|
||
List<int> nums = List.filled(n, 0);
|
||
// 長度為 n 的串列佔用 O(n) 空間
|
||
List<ListNode> nodes = [];
|
||
for (var i = 0; i < n; i++) {
|
||
nodes.add(ListNode(i));
|
||
}
|
||
// 長度為 n 的雜湊表佔用 O(n) 空間
|
||
Map<int, String> map = HashMap();
|
||
for (var i = 0; i < n; i++) {
|
||
map.putIfAbsent(i, () => i.toString());
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title="space_complexity.rs"
|
||
/* 線性階 */
|
||
#[allow(unused)]
|
||
fn linear(n: i32) {
|
||
// 長度為 n 的陣列佔用 O(n) 空間
|
||
let mut nums = vec![0; n as usize];
|
||
// 長度為 n 的串列佔用 O(n) 空間
|
||
let mut nodes = Vec::new();
|
||
for i in 0..n {
|
||
nodes.push(ListNode::new(i))
|
||
}
|
||
// 長度為 n 的雜湊表佔用 O(n) 空間
|
||
let mut map = HashMap::new();
|
||
for i in 0..n {
|
||
map.insert(i, i.to_string());
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="space_complexity.c"
|
||
/* 雜湊表 */
|
||
typedef struct {
|
||
int key;
|
||
int val;
|
||
UT_hash_handle hh; // 基於 uthash.h 實現
|
||
} HashTable;
|
||
|
||
/* 線性階 */
|
||
void linear(int n) {
|
||
// 長度為 n 的陣列佔用 O(n) 空間
|
||
int *nums = malloc(sizeof(int) * n);
|
||
free(nums);
|
||
|
||
// 長度為 n 的串列佔用 O(n) 空間
|
||
ListNode **nodes = malloc(sizeof(ListNode *) * n);
|
||
for (int i = 0; i < n; i++) {
|
||
nodes[i] = newListNode(i);
|
||
}
|
||
// 記憶體釋放
|
||
for (int i = 0; i < n; i++) {
|
||
free(nodes[i]);
|
||
}
|
||
free(nodes);
|
||
|
||
// 長度為 n 的雜湊表佔用 O(n) 空間
|
||
HashTable *h = NULL;
|
||
for (int i = 0; i < n; i++) {
|
||
HashTable *tmp = malloc(sizeof(HashTable));
|
||
tmp->key = i;
|
||
tmp->val = i;
|
||
HASH_ADD_INT(h, key, tmp);
|
||
}
|
||
|
||
// 記憶體釋放
|
||
HashTable *curr, *tmp;
|
||
HASH_ITER(hh, h, curr, tmp) {
|
||
HASH_DEL(h, curr);
|
||
free(curr);
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Kotlin"
|
||
|
||
```kotlin title="space_complexity.kt"
|
||
/* 線性階 */
|
||
fun linear(n: Int) {
|
||
// 長度為 n 的陣列佔用 O(n) 空間
|
||
val nums = Array(n) { 0 }
|
||
// 長度為 n 的串列佔用 O(n) 空間
|
||
val nodes = mutableListOf<ListNode>()
|
||
for (i in 0..<n) {
|
||
nodes.add(ListNode(i))
|
||
}
|
||
// 長度為 n 的雜湊表佔用 O(n) 空間
|
||
val map = mutableMapOf<Int, String>()
|
||
for (i in 0..<n) {
|
||
map[i] = i.toString()
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Ruby"
|
||
|
||
```ruby title="space_complexity.rb"
|
||
### 線性階 ###
|
||
def linear(n)
|
||
# 長度為 n 的串列佔用 O(n) 空間
|
||
nums = Array.new(n, 0)
|
||
|
||
# 長度為 n 的雜湊表佔用 O(n) 空間
|
||
hmap = {}
|
||
for i in 0...n
|
||
hmap[i] = i.to_s
|
||
end
|
||
end
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="space_complexity.zig"
|
||
// 線性階
|
||
fn linear(comptime n: i32) !void {
|
||
// 長度為 n 的陣列佔用 O(n) 空間
|
||
var nums = [_]i32{0}**n;
|
||
// 長度為 n 的串列佔用 O(n) 空間
|
||
var nodes = std.ArrayList(i32).init(std.heap.page_allocator);
|
||
defer nodes.deinit();
|
||
var i: i32 = 0;
|
||
while (i < n) : (i += 1) {
|
||
try nodes.append(i);
|
||
}
|
||
// 長度為 n 的雜湊表佔用 O(n) 空間
|
||
var map = std.AutoArrayHashMap(i32, []const u8).init(std.heap.page_allocator);
|
||
defer map.deinit();
|
||
var j: i32 = 0;
|
||
while (j < n) : (j += 1) {
|
||
const string = try std.fmt.allocPrint(std.heap.page_allocator, "{d}", .{j});
|
||
defer std.heap.page_allocator.free(string);
|
||
try map.put(i, string);
|
||
}
|
||
_ = nums;
|
||
}
|
||
```
|
||
|
||
??? pythontutor "視覺化執行"
|
||
|
||
<div style="height: 477px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20linear%28n%3A%20int%29%3A%0A%20%20%20%20%22%22%22%E7%BA%BF%E6%80%A7%E9%98%B6%22%22%22%0A%20%20%20%20%23%20%E9%95%BF%E5%BA%A6%E4%B8%BA%20n%20%E7%9A%84%E5%88%97%E8%A1%A8%E5%8D%A0%E7%94%A8%20O%28n%29%20%E7%A9%BA%E9%97%B4%0A%20%20%20%20nums%20%3D%20%5B0%5D%20*%20n%0A%20%20%20%20%23%20%E9%95%BF%E5%BA%A6%E4%B8%BA%20n%20%E7%9A%84%E5%93%88%E5%B8%8C%E8%A1%A8%E5%8D%A0%E7%94%A8%20O%28n%29%20%E7%A9%BA%E9%97%B4%0A%20%20%20%20hmap%20%3D%20dict%5Bint,%20str%5D%28%29%0A%20%20%20%20for%20i%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20hmap%5Bi%5D%20%3D%20str%28i%29%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%205%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20%23%20%E7%BA%BF%E6%80%A7%E9%98%B6%0A%20%20%20%20linear%28n%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=20&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20linear%28n%3A%20int%29%3A%0A%20%20%20%20%22%22%22%E7%BA%BF%E6%80%A7%E9%98%B6%22%22%22%0A%20%20%20%20%23%20%E9%95%BF%E5%BA%A6%E4%B8%BA%20n%20%E7%9A%84%E5%88%97%E8%A1%A8%E5%8D%A0%E7%94%A8%20O%28n%29%20%E7%A9%BA%E9%97%B4%0A%20%20%20%20nums%20%3D%20%5B0%5D%20*%20n%0A%20%20%20%20%23%20%E9%95%BF%E5%BA%A6%E4%B8%BA%20n%20%E7%9A%84%E5%93%88%E5%B8%8C%E8%A1%A8%E5%8D%A0%E7%94%A8%20O%28n%29%20%E7%A9%BA%E9%97%B4%0A%20%20%20%20hmap%20%3D%20dict%5Bint,%20str%5D%28%29%0A%20%20%20%20for%20i%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20hmap%5Bi%5D%20%3D%20str%28i%29%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%205%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20%23%20%E7%BA%BF%E6%80%A7%E9%98%B6%0A%20%20%20%20linear%28n%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=20&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
||
|
||
如圖 2-17 所示,此函式的遞迴深度為 $n$ ,即同時存在 $n$ 個未返回的 `linear_recur()` 函式,使用 $O(n)$ 大小的堆疊幀空間:
|
||
|
||
=== "Python"
|
||
|
||
```python title="space_complexity.py"
|
||
def linear_recur(n: int):
|
||
"""線性階(遞迴實現)"""
|
||
print("遞迴 n =", n)
|
||
if n == 1:
|
||
return
|
||
linear_recur(n - 1)
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="space_complexity.cpp"
|
||
/* 線性階(遞迴實現) */
|
||
void linearRecur(int n) {
|
||
cout << "遞迴 n = " << n << endl;
|
||
if (n == 1)
|
||
return;
|
||
linearRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "Java"
|
||
|
||
```java title="space_complexity.java"
|
||
/* 線性階(遞迴實現) */
|
||
void linearRecur(int n) {
|
||
System.out.println("遞迴 n = " + n);
|
||
if (n == 1)
|
||
return;
|
||
linearRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="space_complexity.cs"
|
||
/* 線性階(遞迴實現) */
|
||
void LinearRecur(int n) {
|
||
Console.WriteLine("遞迴 n = " + n);
|
||
if (n == 1) return;
|
||
LinearRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="space_complexity.go"
|
||
/* 線性階(遞迴實現) */
|
||
func spaceLinearRecur(n int) {
|
||
fmt.Println("遞迴 n =", n)
|
||
if n == 1 {
|
||
return
|
||
}
|
||
spaceLinearRecur(n - 1)
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="space_complexity.swift"
|
||
/* 線性階(遞迴實現) */
|
||
func linearRecur(n: Int) {
|
||
print("遞迴 n = \(n)")
|
||
if n == 1 {
|
||
return
|
||
}
|
||
linearRecur(n: n - 1)
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title="space_complexity.js"
|
||
/* 線性階(遞迴實現) */
|
||
function linearRecur(n) {
|
||
console.log(`遞迴 n = ${n}`);
|
||
if (n === 1) return;
|
||
linearRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title="space_complexity.ts"
|
||
/* 線性階(遞迴實現) */
|
||
function linearRecur(n: number): void {
|
||
console.log(`遞迴 n = ${n}`);
|
||
if (n === 1) return;
|
||
linearRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="space_complexity.dart"
|
||
/* 線性階(遞迴實現) */
|
||
void linearRecur(int n) {
|
||
print('遞迴 n = $n');
|
||
if (n == 1) return;
|
||
linearRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title="space_complexity.rs"
|
||
/* 線性階(遞迴實現) */
|
||
fn linear_recur(n: i32) {
|
||
println!("遞迴 n = {}", n);
|
||
if n == 1 {
|
||
return;
|
||
};
|
||
linear_recur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="space_complexity.c"
|
||
/* 線性階(遞迴實現) */
|
||
void linearRecur(int n) {
|
||
printf("遞迴 n = %d\r\n", n);
|
||
if (n == 1)
|
||
return;
|
||
linearRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "Kotlin"
|
||
|
||
```kotlin title="space_complexity.kt"
|
||
/* 線性階(遞迴實現) */
|
||
fun linearRecur(n: Int) {
|
||
println("遞迴 n = $n")
|
||
if (n == 1)
|
||
return
|
||
linearRecur(n - 1)
|
||
}
|
||
```
|
||
|
||
=== "Ruby"
|
||
|
||
```ruby title="space_complexity.rb"
|
||
### 線性階(遞迴實現)###
|
||
def linear_recur(n)
|
||
puts "遞迴 n = #{n}"
|
||
return if n == 1
|
||
linear_recur(n - 1)
|
||
end
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="space_complexity.zig"
|
||
// 線性階(遞迴實現)
|
||
fn linearRecur(comptime n: i32) void {
|
||
std.debug.print("遞迴 n = {}\n", .{n});
|
||
if (n == 1) return;
|
||
linearRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
??? pythontutor "視覺化執行"
|
||
|
||
<div style="height: 441px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20linear_recur%28n%3A%20int%29%3A%0A%20%20%20%20%22%22%22%E7%BA%BF%E6%80%A7%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%22%22%22%0A%20%20%20%20print%28%22%E9%80%92%E5%BD%92%20n%20%3D%22,%20n%29%0A%20%20%20%20if%20n%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20linear_recur%28n%20-%201%29%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%205%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20%23%20%E7%BA%BF%E6%80%A7%E9%98%B6%0A%20%20%20%20linear_recur%28n%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=25&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20linear_recur%28n%3A%20int%29%3A%0A%20%20%20%20%22%22%22%E7%BA%BF%E6%80%A7%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%22%22%22%0A%20%20%20%20print%28%22%E9%80%92%E5%BD%92%20n%20%3D%22,%20n%29%0A%20%20%20%20if%20n%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20linear_recur%28n%20-%201%29%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%205%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20%23%20%E7%BA%BF%E6%80%A7%E9%98%B6%0A%20%20%20%20linear_recur%28n%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=25&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
||
|
||
![遞迴函式產生的線性階空間複雜度](space_complexity.assets/space_complexity_recursive_linear.png){ class="animation-figure" }
|
||
|
||
<p align="center"> 圖 2-17 遞迴函式產生的線性階空間複雜度 </p>
|
||
|
||
### 3. 平方階 $O(n^2)$ {data-toc-label="3. 平方階"}
|
||
|
||
平方階常見於矩陣和圖,元素數量與 $n$ 成平方關係:
|
||
|
||
=== "Python"
|
||
|
||
```python title="space_complexity.py"
|
||
def quadratic(n: int):
|
||
"""平方階"""
|
||
# 二維串列佔用 O(n^2) 空間
|
||
num_matrix = [[0] * n for _ in range(n)]
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="space_complexity.cpp"
|
||
/* 平方階 */
|
||
void quadratic(int n) {
|
||
// 二維串列佔用 O(n^2) 空間
|
||
vector<vector<int>> numMatrix;
|
||
for (int i = 0; i < n; i++) {
|
||
vector<int> tmp;
|
||
for (int j = 0; j < n; j++) {
|
||
tmp.push_back(0);
|
||
}
|
||
numMatrix.push_back(tmp);
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Java"
|
||
|
||
```java title="space_complexity.java"
|
||
/* 平方階 */
|
||
void quadratic(int n) {
|
||
// 矩陣佔用 O(n^2) 空間
|
||
int[][] numMatrix = new int[n][n];
|
||
// 二維串列佔用 O(n^2) 空間
|
||
List<List<Integer>> numList = new ArrayList<>();
|
||
for (int i = 0; i < n; i++) {
|
||
List<Integer> tmp = new ArrayList<>();
|
||
for (int j = 0; j < n; j++) {
|
||
tmp.add(0);
|
||
}
|
||
numList.add(tmp);
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="space_complexity.cs"
|
||
/* 平方階 */
|
||
void Quadratic(int n) {
|
||
// 矩陣佔用 O(n^2) 空間
|
||
int[,] numMatrix = new int[n, n];
|
||
// 二維串列佔用 O(n^2) 空間
|
||
List<List<int>> numList = [];
|
||
for (int i = 0; i < n; i++) {
|
||
List<int> tmp = [];
|
||
for (int j = 0; j < n; j++) {
|
||
tmp.Add(0);
|
||
}
|
||
numList.Add(tmp);
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="space_complexity.go"
|
||
/* 平方階 */
|
||
func spaceQuadratic(n int) {
|
||
// 矩陣佔用 O(n^2) 空間
|
||
numMatrix := make([][]int, n)
|
||
for i := 0; i < n; i++ {
|
||
numMatrix[i] = make([]int, n)
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="space_complexity.swift"
|
||
/* 平方階 */
|
||
func quadratic(n: Int) {
|
||
// 二維串列佔用 O(n^2) 空間
|
||
let numList = Array(repeating: Array(repeating: 0, count: n), count: n)
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title="space_complexity.js"
|
||
/* 平方階 */
|
||
function quadratic(n) {
|
||
// 矩陣佔用 O(n^2) 空間
|
||
const numMatrix = Array(n)
|
||
.fill(null)
|
||
.map(() => Array(n).fill(null));
|
||
// 二維串列佔用 O(n^2) 空間
|
||
const numList = [];
|
||
for (let i = 0; i < n; i++) {
|
||
const tmp = [];
|
||
for (let j = 0; j < n; j++) {
|
||
tmp.push(0);
|
||
}
|
||
numList.push(tmp);
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title="space_complexity.ts"
|
||
/* 平方階 */
|
||
function quadratic(n: number): void {
|
||
// 矩陣佔用 O(n^2) 空間
|
||
const numMatrix = Array(n)
|
||
.fill(null)
|
||
.map(() => Array(n).fill(null));
|
||
// 二維串列佔用 O(n^2) 空間
|
||
const numList = [];
|
||
for (let i = 0; i < n; i++) {
|
||
const tmp = [];
|
||
for (let j = 0; j < n; j++) {
|
||
tmp.push(0);
|
||
}
|
||
numList.push(tmp);
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="space_complexity.dart"
|
||
/* 平方階 */
|
||
void quadratic(int n) {
|
||
// 矩陣佔用 O(n^2) 空間
|
||
List<List<int>> numMatrix = List.generate(n, (_) => List.filled(n, 0));
|
||
// 二維串列佔用 O(n^2) 空間
|
||
List<List<int>> numList = [];
|
||
for (var i = 0; i < n; i++) {
|
||
List<int> tmp = [];
|
||
for (int j = 0; j < n; j++) {
|
||
tmp.add(0);
|
||
}
|
||
numList.add(tmp);
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title="space_complexity.rs"
|
||
/* 平方階 */
|
||
#[allow(unused)]
|
||
fn quadratic(n: i32) {
|
||
// 矩陣佔用 O(n^2) 空間
|
||
let num_matrix = vec![vec![0; n as usize]; n as usize];
|
||
// 二維串列佔用 O(n^2) 空間
|
||
let mut num_list = Vec::new();
|
||
for i in 0..n {
|
||
let mut tmp = Vec::new();
|
||
for j in 0..n {
|
||
tmp.push(0);
|
||
}
|
||
num_list.push(tmp);
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="space_complexity.c"
|
||
/* 平方階 */
|
||
void quadratic(int n) {
|
||
// 二維串列佔用 O(n^2) 空間
|
||
int **numMatrix = malloc(sizeof(int *) * n);
|
||
for (int i = 0; i < n; i++) {
|
||
int *tmp = malloc(sizeof(int) * n);
|
||
for (int j = 0; j < n; j++) {
|
||
tmp[j] = 0;
|
||
}
|
||
numMatrix[i] = tmp;
|
||
}
|
||
|
||
// 記憶體釋放
|
||
for (int i = 0; i < n; i++) {
|
||
free(numMatrix[i]);
|
||
}
|
||
free(numMatrix);
|
||
}
|
||
```
|
||
|
||
=== "Kotlin"
|
||
|
||
```kotlin title="space_complexity.kt"
|
||
/* 平方階 */
|
||
fun quadratic(n: Int) {
|
||
// 矩陣佔用 O(n^2) 空間
|
||
val numMatrix: Array<Array<Int>?> = arrayOfNulls(n)
|
||
// 二維串列佔用 O(n^2) 空間
|
||
val numList: MutableList<MutableList<Int>> = arrayListOf()
|
||
for (i in 0..<n) {
|
||
val tmp = mutableListOf<Int>()
|
||
for (j in 0..<n) {
|
||
tmp.add(0)
|
||
}
|
||
numList.add(tmp)
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Ruby"
|
||
|
||
```ruby title="space_complexity.rb"
|
||
### 平方階 ###
|
||
def quadratic(n)
|
||
# 二維串列佔用 O(n^2) 空間
|
||
Array.new(n) { Array.new(n, 0) }
|
||
end
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="space_complexity.zig"
|
||
// 平方階
|
||
fn quadratic(n: i32) !void {
|
||
// 二維串列佔用 O(n^2) 空間
|
||
var nodes = std.ArrayList(std.ArrayList(i32)).init(std.heap.page_allocator);
|
||
defer nodes.deinit();
|
||
var i: i32 = 0;
|
||
while (i < n) : (i += 1) {
|
||
var tmp = std.ArrayList(i32).init(std.heap.page_allocator);
|
||
defer tmp.deinit();
|
||
var j: i32 = 0;
|
||
while (j < n) : (j += 1) {
|
||
try tmp.append(0);
|
||
}
|
||
try nodes.append(tmp);
|
||
}
|
||
}
|
||
```
|
||
|
||
??? pythontutor "視覺化執行"
|
||
|
||
<div style="height: 405px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20quadratic%28n%3A%20int%29%3A%0A%20%20%20%20%22%22%22%E5%B9%B3%E6%96%B9%E9%98%B6%22%22%22%0A%20%20%20%20%23%20%E4%BA%8C%E7%BB%B4%E5%88%97%E8%A1%A8%E5%8D%A0%E7%94%A8%20O%28n%5E2%29%20%E7%A9%BA%E9%97%B4%0A%20%20%20%20num_matrix%20%3D%20%5B%5B0%5D%20*%20n%20for%20_%20in%20range%28n%29%5D%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%205%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20%23%20%E5%B9%B3%E6%96%B9%E9%98%B6%0A%20%20%20%20quadratic%28n%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=16&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20quadratic%28n%3A%20int%29%3A%0A%20%20%20%20%22%22%22%E5%B9%B3%E6%96%B9%E9%98%B6%22%22%22%0A%20%20%20%20%23%20%E4%BA%8C%E7%BB%B4%E5%88%97%E8%A1%A8%E5%8D%A0%E7%94%A8%20O%28n%5E2%29%20%E7%A9%BA%E9%97%B4%0A%20%20%20%20num_matrix%20%3D%20%5B%5B0%5D%20*%20n%20for%20_%20in%20range%28n%29%5D%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%205%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20%23%20%E5%B9%B3%E6%96%B9%E9%98%B6%0A%20%20%20%20quadratic%28n%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=16&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
||
|
||
如圖 2-18 所示,該函式的遞迴深度為 $n$ ,在每個遞迴函式中都初始化了一個陣列,長度分別為 $n$、$n-1$、$\dots$、$2$、$1$ ,平均長度為 $n / 2$ ,因此總體佔用 $O(n^2)$ 空間:
|
||
|
||
=== "Python"
|
||
|
||
```python title="space_complexity.py"
|
||
def quadratic_recur(n: int) -> int:
|
||
"""平方階(遞迴實現)"""
|
||
if n <= 0:
|
||
return 0
|
||
# 陣列 nums 長度為 n, n-1, ..., 2, 1
|
||
nums = [0] * n
|
||
return quadratic_recur(n - 1)
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="space_complexity.cpp"
|
||
/* 平方階(遞迴實現) */
|
||
int quadraticRecur(int n) {
|
||
if (n <= 0)
|
||
return 0;
|
||
vector<int> nums(n);
|
||
cout << "遞迴 n = " << n << " 中的 nums 長度 = " << nums.size() << endl;
|
||
return quadraticRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "Java"
|
||
|
||
```java title="space_complexity.java"
|
||
/* 平方階(遞迴實現) */
|
||
int quadraticRecur(int n) {
|
||
if (n <= 0)
|
||
return 0;
|
||
// 陣列 nums 長度為 n, n-1, ..., 2, 1
|
||
int[] nums = new int[n];
|
||
System.out.println("遞迴 n = " + n + " 中的 nums 長度 = " + nums.length);
|
||
return quadraticRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="space_complexity.cs"
|
||
/* 平方階(遞迴實現) */
|
||
int QuadraticRecur(int n) {
|
||
if (n <= 0) return 0;
|
||
int[] nums = new int[n];
|
||
Console.WriteLine("遞迴 n = " + n + " 中的 nums 長度 = " + nums.Length);
|
||
return QuadraticRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="space_complexity.go"
|
||
/* 平方階(遞迴實現) */
|
||
func spaceQuadraticRecur(n int) int {
|
||
if n <= 0 {
|
||
return 0
|
||
}
|
||
nums := make([]int, n)
|
||
fmt.Printf("遞迴 n = %d 中的 nums 長度 = %d \n", n, len(nums))
|
||
return spaceQuadraticRecur(n - 1)
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="space_complexity.swift"
|
||
/* 平方階(遞迴實現) */
|
||
@discardableResult
|
||
func quadraticRecur(n: Int) -> Int {
|
||
if n <= 0 {
|
||
return 0
|
||
}
|
||
// 陣列 nums 長度為 n, n-1, ..., 2, 1
|
||
let nums = Array(repeating: 0, count: n)
|
||
print("遞迴 n = \(n) 中的 nums 長度 = \(nums.count)")
|
||
return quadraticRecur(n: n - 1)
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title="space_complexity.js"
|
||
/* 平方階(遞迴實現) */
|
||
function quadraticRecur(n) {
|
||
if (n <= 0) return 0;
|
||
const nums = new Array(n);
|
||
console.log(`遞迴 n = ${n} 中的 nums 長度 = ${nums.length}`);
|
||
return quadraticRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title="space_complexity.ts"
|
||
/* 平方階(遞迴實現) */
|
||
function quadraticRecur(n: number): number {
|
||
if (n <= 0) return 0;
|
||
const nums = new Array(n);
|
||
console.log(`遞迴 n = ${n} 中的 nums 長度 = ${nums.length}`);
|
||
return quadraticRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="space_complexity.dart"
|
||
/* 平方階(遞迴實現) */
|
||
int quadraticRecur(int n) {
|
||
if (n <= 0) return 0;
|
||
List<int> nums = List.filled(n, 0);
|
||
print('遞迴 n = $n 中的 nums 長度 = ${nums.length}');
|
||
return quadraticRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title="space_complexity.rs"
|
||
/* 平方階(遞迴實現) */
|
||
fn quadratic_recur(n: i32) -> i32 {
|
||
if n <= 0 {
|
||
return 0;
|
||
};
|
||
// 陣列 nums 長度為 n, n-1, ..., 2, 1
|
||
let nums = vec![0; n as usize];
|
||
println!("遞迴 n = {} 中的 nums 長度 = {}", n, nums.len());
|
||
return quadratic_recur(n - 1);
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="space_complexity.c"
|
||
/* 平方階(遞迴實現) */
|
||
int quadraticRecur(int n) {
|
||
if (n <= 0)
|
||
return 0;
|
||
int *nums = malloc(sizeof(int) * n);
|
||
printf("遞迴 n = %d 中的 nums 長度 = %d\r\n", n, n);
|
||
int res = quadraticRecur(n - 1);
|
||
free(nums);
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "Kotlin"
|
||
|
||
```kotlin title="space_complexity.kt"
|
||
/* 平方階(遞迴實現) */
|
||
tailrec fun quadraticRecur(n: Int): Int {
|
||
if (n <= 0)
|
||
return 0
|
||
// 陣列 nums 長度為 n, n-1, ..., 2, 1
|
||
val nums = Array(n) { 0 }
|
||
println("遞迴 n = $n 中的 nums 長度 = ${nums.size}")
|
||
return quadraticRecur(n - 1)
|
||
}
|
||
```
|
||
|
||
=== "Ruby"
|
||
|
||
```ruby title="space_complexity.rb"
|
||
### 平方階(遞迴實現)###
|
||
def quadratic_recur(n)
|
||
return 0 unless n > 0
|
||
|
||
# 陣列 nums 長度為 n, n-1, ..., 2, 1
|
||
nums = Array.new(n, 0)
|
||
quadratic_recur(n - 1)
|
||
end
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="space_complexity.zig"
|
||
// 平方階(遞迴實現)
|
||
fn quadraticRecur(comptime n: i32) i32 {
|
||
if (n <= 0) return 0;
|
||
var nums = [_]i32{0}**n;
|
||
std.debug.print("遞迴 n = {} 中的 nums 長度 = {}\n", .{n, nums.len});
|
||
return quadraticRecur(n - 1);
|
||
}
|
||
```
|
||
|
||
??? pythontutor "視覺化執行"
|
||
|
||
<div style="height: 459px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20quadratic_recur%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B9%B3%E6%96%B9%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3C%3D%200%3A%0A%20%20%20%20%20%20%20%20return%200%0A%20%20%20%20%23%20%E6%95%B0%E7%BB%84%20nums%20%E9%95%BF%E5%BA%A6%E4%B8%BA%20n,%20n-1,%20...,%202,%201%0A%20%20%20%20nums%20%3D%20%5B0%5D%20*%20n%0A%20%20%20%20return%20quadratic_recur%28n%20-%201%29%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%205%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20%23%20%E5%B9%B3%E6%96%B9%E9%98%B6%0A%20%20%20%20quadratic_recur%28n%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=28&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20quadratic_recur%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B9%B3%E6%96%B9%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3C%3D%200%3A%0A%20%20%20%20%20%20%20%20return%200%0A%20%20%20%20%23%20%E6%95%B0%E7%BB%84%20nums%20%E9%95%BF%E5%BA%A6%E4%B8%BA%20n,%20n-1,%20...,%202,%201%0A%20%20%20%20nums%20%3D%20%5B0%5D%20*%20n%0A%20%20%20%20return%20quadratic_recur%28n%20-%201%29%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%205%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20%23%20%E5%B9%B3%E6%96%B9%E9%98%B6%0A%20%20%20%20quadratic_recur%28n%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=28&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
||
|
||
![遞迴函式產生的平方階空間複雜度](space_complexity.assets/space_complexity_recursive_quadratic.png){ class="animation-figure" }
|
||
|
||
<p align="center"> 圖 2-18 遞迴函式產生的平方階空間複雜度 </p>
|
||
|
||
### 4. 指數階 $O(2^n)$ {data-toc-label="4. 指數階"}
|
||
|
||
指數階常見於二元樹。觀察圖 2-19 ,層數為 $n$ 的“滿二元樹”的節點數量為 $2^n - 1$ ,佔用 $O(2^n)$ 空間:
|
||
|
||
=== "Python"
|
||
|
||
```python title="space_complexity.py"
|
||
def build_tree(n: int) -> TreeNode | None:
|
||
"""指數階(建立滿二元樹)"""
|
||
if n == 0:
|
||
return None
|
||
root = TreeNode(0)
|
||
root.left = build_tree(n - 1)
|
||
root.right = build_tree(n - 1)
|
||
return root
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="space_complexity.cpp"
|
||
/* 指數階(建立滿二元樹) */
|
||
TreeNode *buildTree(int n) {
|
||
if (n == 0)
|
||
return nullptr;
|
||
TreeNode *root = new TreeNode(0);
|
||
root->left = buildTree(n - 1);
|
||
root->right = buildTree(n - 1);
|
||
return root;
|
||
}
|
||
```
|
||
|
||
=== "Java"
|
||
|
||
```java title="space_complexity.java"
|
||
/* 指數階(建立滿二元樹) */
|
||
TreeNode buildTree(int n) {
|
||
if (n == 0)
|
||
return null;
|
||
TreeNode root = new TreeNode(0);
|
||
root.left = buildTree(n - 1);
|
||
root.right = buildTree(n - 1);
|
||
return root;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="space_complexity.cs"
|
||
/* 指數階(建立滿二元樹) */
|
||
TreeNode? BuildTree(int n) {
|
||
if (n == 0) return null;
|
||
TreeNode root = new(0) {
|
||
left = BuildTree(n - 1),
|
||
right = BuildTree(n - 1)
|
||
};
|
||
return root;
|
||
}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="space_complexity.go"
|
||
/* 指數階(建立滿二元樹) */
|
||
func buildTree(n int) *TreeNode {
|
||
if n == 0 {
|
||
return nil
|
||
}
|
||
root := NewTreeNode(0)
|
||
root.Left = buildTree(n - 1)
|
||
root.Right = buildTree(n - 1)
|
||
return root
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="space_complexity.swift"
|
||
/* 指數階(建立滿二元樹) */
|
||
func buildTree(n: Int) -> TreeNode? {
|
||
if n == 0 {
|
||
return nil
|
||
}
|
||
let root = TreeNode(x: 0)
|
||
root.left = buildTree(n: n - 1)
|
||
root.right = buildTree(n: n - 1)
|
||
return root
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title="space_complexity.js"
|
||
/* 指數階(建立滿二元樹) */
|
||
function buildTree(n) {
|
||
if (n === 0) return null;
|
||
const root = new TreeNode(0);
|
||
root.left = buildTree(n - 1);
|
||
root.right = buildTree(n - 1);
|
||
return root;
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title="space_complexity.ts"
|
||
/* 指數階(建立滿二元樹) */
|
||
function buildTree(n: number): TreeNode | null {
|
||
if (n === 0) return null;
|
||
const root = new TreeNode(0);
|
||
root.left = buildTree(n - 1);
|
||
root.right = buildTree(n - 1);
|
||
return root;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="space_complexity.dart"
|
||
/* 指數階(建立滿二元樹) */
|
||
TreeNode? buildTree(int n) {
|
||
if (n == 0) return null;
|
||
TreeNode root = TreeNode(0);
|
||
root.left = buildTree(n - 1);
|
||
root.right = buildTree(n - 1);
|
||
return root;
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title="space_complexity.rs"
|
||
/* 指數階(建立滿二元樹) */
|
||
fn build_tree(n: i32) -> Option<Rc<RefCell<TreeNode>>> {
|
||
if n == 0 {
|
||
return None;
|
||
};
|
||
let root = TreeNode::new(0);
|
||
root.borrow_mut().left = build_tree(n - 1);
|
||
root.borrow_mut().right = build_tree(n - 1);
|
||
return Some(root);
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="space_complexity.c"
|
||
/* 指數階(建立滿二元樹) */
|
||
TreeNode *buildTree(int n) {
|
||
if (n == 0)
|
||
return NULL;
|
||
TreeNode *root = newTreeNode(0);
|
||
root->left = buildTree(n - 1);
|
||
root->right = buildTree(n - 1);
|
||
return root;
|
||
}
|
||
```
|
||
|
||
=== "Kotlin"
|
||
|
||
```kotlin title="space_complexity.kt"
|
||
/* 指數階(建立滿二元樹) */
|
||
fun buildTree(n: Int): TreeNode? {
|
||
if (n == 0)
|
||
return null
|
||
val root = TreeNode(0)
|
||
root.left = buildTree(n - 1)
|
||
root.right = buildTree(n - 1)
|
||
return root
|
||
}
|
||
```
|
||
|
||
=== "Ruby"
|
||
|
||
```ruby title="space_complexity.rb"
|
||
### 指數階(建立滿二元樹)###
|
||
def build_tree(n)
|
||
return if n == 0
|
||
|
||
TreeNode.new.tap do |root|
|
||
root.left = build_tree(n - 1)
|
||
root.right = build_tree(n - 1)
|
||
end
|
||
end
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="space_complexity.zig"
|
||
// 指數階(建立滿二元樹)
|
||
fn buildTree(mem_allocator: std.mem.Allocator, n: i32) !?*inc.TreeNode(i32) {
|
||
if (n == 0) return null;
|
||
const root = try mem_allocator.create(inc.TreeNode(i32));
|
||
root.init(0);
|
||
root.left = try buildTree(mem_allocator, n - 1);
|
||
root.right = try buildTree(mem_allocator, n - 1);
|
||
return root;
|
||
}
|
||
```
|
||
|
||
??? pythontutor "視覺化執行"
|
||
|
||
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%8F%89%E6%A0%91%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%20%3D%200%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.left%3A%20TreeNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%B7%A6%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%20%20%20%20%20%20%20%20self.right%3A%20TreeNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%8F%B3%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0Adef%20build_tree%28n%3A%20int%29%20-%3E%20TreeNode%20%7C%20None%3A%0A%20%20%20%20%22%22%22%E6%8C%87%E6%95%B0%E9%98%B6%EF%BC%88%E5%BB%BA%E7%AB%8B%E6%BB%A1%E4%BA%8C%E5%8F%89%E6%A0%91%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%20None%0A%20%20%20%20root%20%3D%20TreeNode%280%29%0A%20%20%20%20root.left%20%3D%20build_tree%28n%20-%201%29%0A%20%20%20%20root.right%20%3D%20build_tree%28n%20-%201%29%0A%20%20%20%20return%20root%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%205%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20%23%20%E6%8C%87%E6%95%B0%E9%98%B6%0A%20%20%20%20root%20%3D%20build_tree%28n%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=507&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%8F%89%E6%A0%91%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%20%3D%200%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.left%3A%20TreeNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%B7%A6%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%20%20%20%20%20%20%20%20self.right%3A%20TreeNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%8F%B3%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0Adef%20build_tree%28n%3A%20int%29%20-%3E%20TreeNode%20%7C%20None%3A%0A%20%20%20%20%22%22%22%E6%8C%87%E6%95%B0%E9%98%B6%EF%BC%88%E5%BB%BA%E7%AB%8B%E6%BB%A1%E4%BA%8C%E5%8F%89%E6%A0%91%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%20None%0A%20%20%20%20root%20%3D%20TreeNode%280%29%0A%20%20%20%20root.left%20%3D%20build_tree%28n%20-%201%29%0A%20%20%20%20root.right%20%3D%20build_tree%28n%20-%201%29%0A%20%20%20%20return%20root%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%205%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20%23%20%E6%8C%87%E6%95%B0%E9%98%B6%0A%20%20%20%20root%20%3D%20build_tree%28n%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=507&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
||
|
||
![滿二元樹產生的指數階空間複雜度](space_complexity.assets/space_complexity_exponential.png){ class="animation-figure" }
|
||
|
||
<p align="center"> 圖 2-19 滿二元樹產生的指數階空間複雜度 </p>
|
||
|
||
### 5. 對數階 $O(\log n)$ {data-toc-label="5. 對數階"}
|
||
|
||
對數階常見於分治演算法。例如合併排序,輸入長度為 $n$ 的陣列,每輪遞迴將陣列從中點處劃分為兩半,形成高度為 $\log n$ 的遞迴樹,使用 $O(\log n)$ 堆疊幀空間。
|
||
|
||
再例如將數字轉化為字串,輸入一個正整數 $n$ ,它的位數為 $\lfloor \log_{10} n \rfloor + 1$ ,即對應字串長度為 $\lfloor \log_{10} n \rfloor + 1$ ,因此空間複雜度為 $O(\log_{10} n + 1) = O(\log n)$ 。
|
||
|
||
## 2.4.4 權衡時間與空間
|
||
|
||
理想情況下,我們希望演算法的時間複雜度和空間複雜度都能達到最優。然而在實際情況中,同時最佳化時間複雜度和空間複雜度通常非常困難。
|
||
|
||
**降低時間複雜度通常需要以提升空間複雜度為代價,反之亦然**。我們將犧牲記憶體空間來提升演算法執行速度的思路稱為“以空間換時間”;反之,則稱為“以時間換空間”。
|
||
|
||
選擇哪種思路取決於我們更看重哪個方面。在大多數情況下,時間比空間更寶貴,因此“以空間換時間”通常是更常用的策略。當然,在資料量很大的情況下,控制空間複雜度也非常重要。
|