hello-algo/docs/chapter_tree/binary_tree.md
2023-10-26 03:00:28 +08:00

17 KiB
Raw Blame History

comments
true

7.1   二叉树

「二叉树 binary tree」是一种非线性数据结构代表着祖先与后代之间的派生关系体现着“一分为二”的分治逻辑。与链表类似二叉树的基本单元是节点每个节点包含值、左子节点引用、右子节点引用。

=== "Python"

```python title=""
class TreeNode:
    """二叉树节点类"""
    def __init__(self, val: int):
        self.val: int = val                # 节点值
        self.left: TreeNode | None = None  # 左子节点引用
        self.right: TreeNode | None = None # 右子节点引用
```

=== "C++"

```cpp title=""
/* 二叉树节点结构体 */
struct TreeNode {
    int val;          // 节点值
    TreeNode *left;   // 左子节点指针
    TreeNode *right;  // 右子节点指针
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
```

=== "Java"

```java title=""
/* 二叉树节点类 */
class TreeNode {
    int val;         // 节点值
    TreeNode left;   // 左子节点引用
    TreeNode right;  // 右子节点引用
    TreeNode(int x) { val = x; }
}
```

=== "C#"

```csharp title=""
/* 二叉树节点类 */
class TreeNode {
    int val;          // 节点值
    TreeNode? left;   // 左子节点引用
    TreeNode? right;  // 右子节点引用
    TreeNode(int x) { val = x; }
}
```

=== "Go"

```go title=""
/* 二叉树节点结构体 */
type TreeNode struct {
    Val   int
    Left  *TreeNode
    Right *TreeNode
}
/* 构造方法 */
func NewTreeNode(v int) *TreeNode {
    return &TreeNode{
        Left:  nil, // 左子节点指针
        Right: nil, // 右子节点指针
        Val:   v,   // 节点值
    }
}
```

=== "Swift"

```swift title=""
/* 二叉树节点类 */
class TreeNode {
    var val: Int // 节点值
    var left: TreeNode? // 左子节点引用
    var right: TreeNode? // 右子节点引用

    init(x: Int) {
        val = x
    }
}
```

=== "JS"

```javascript title=""
/* 二叉树节点类 */
class TreeNode {
    val; // 节点值
    left; // 左子节点指针
    right; // 右子节点指针
    constructor(val, left, right) {
        this.val = val === undefined ? 0 : val;
        this.left = left === undefined ? null : left;
        this.right = right === undefined ? null : right;
    }
}
```

=== "TS"

```typescript title=""
/* 二叉树节点类 */
class TreeNode {
    val: number;
    left: TreeNode | null;
    right: TreeNode | null;

    constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
        this.val = val === undefined ? 0 : val; // 节点值
        this.left = left === undefined ? null : left; // 左子节点引用
        this.right = right === undefined ? null : right; // 右子节点引用
    }
}
```

=== "Dart"

```dart title=""
/* 二叉树节点类 */
class TreeNode {
  int val;         // 节点值
  TreeNode? left;  // 左子节点引用
  TreeNode? right; // 右子节点引用
  TreeNode(this.val, [this.left, this.right]);
}
```

=== "Rust"

```rust title=""
use std::rc::Rc;
use std::cell::RefCell;

/* 二叉树节点结构体 */
struct TreeNode {
    val: i32,                               // 节点值
    left: Option<Rc<RefCell<TreeNode>>>,    // 左子节点引用
    right: Option<Rc<RefCell<TreeNode>>>,   // 右子节点引用
}

impl TreeNode {
    /* 构造方法 */
    fn new(val: i32) -> Rc<RefCell<Self>> {
        Rc::new(RefCell::new(Self {
            val,
            left: None,
            right: None
        }))
    }
}
```

=== "C"

```c title=""
/* 二叉树节点结构体 */
typedef struct TreeNode {
    int val;                // 节点值
    int height;             // 节点高度
    struct TreeNode *left;  // 左子节点指针
    struct TreeNode *right; // 右子节点指针
} TreeNode;

/* 构造函数 */
TreeNode *newTreeNode(int val) {
    TreeNode *node;

    node = (TreeNode *)malloc(sizeof(TreeNode));
    node->val = val;
    node->height = 0;
    node->left = NULL;
    node->right = NULL;
    return node;
}
```

=== "Zig"

```zig title=""

```

每个节点都有两个引用(指针),分别指向「左子节点 left-child node」和「右子节点 right-child node」该节点被称为这两个子节点的「父节点 parent node」。当给定一个二叉树的节点时我们将该节点的左子节点及其以下节点形成的树称为该节点的「左子树 left subtree」同理可得「右子树 right subtree」。

在二叉树中,除叶节点外,其他所有节点都包含子节点和非空子树。如图 7-1 所示,如果将“节点 2”视为父节点则其左子节点和右子节点分别是“节点 4”和“节点 5”左子树是“节点 4 及其以下节点形成的树”,右子树是“节点 5 及其以下节点形成的树”。

父节点、子节点、子树

图 7-1   父节点、子节点、子树

7.1.1   二叉树常见术语

二叉树的常用术语如图 7-2 所示。

  • 「根节点 root node」位于二叉树顶层的节点没有父节点。
  • 「叶节点 leaf node」没有子节点的节点其两个指针均指向 \text{None}
  • 「边 edge」连接两个节点的线段即节点引用指针
  • 节点所在的「层 level」从顶至底递增根节点所在层为 1 。
  • 节点的「度 degree」节点的子节点的数量。在二叉树中度的取值范围是 0、1、2 。
  • 二叉树的「高度 height」从根节点到最远叶节点所经过的边的数量。
  • 节点的「深度 depth」从根节点到该节点所经过的边的数量。
  • 节点的「高度 height」从距离该节点最远的叶节点到该节点所经过的边的数量。

二叉树的常用术语

图 7-2   二叉树的常用术语

!!! tip

请注意,我们通常将“高度”和“深度”定义为“走过边的数量”,但有些题目或教材可能会将其定义为“走过节点的数量”。在这种情况下,高度和深度都需要加 1 。

7.1.2   二叉树基本操作

1.   初始化二叉树

与链表类似,首先初始化节点,然后构建引用(指针)。

=== "Python"

```python title="binary_tree.py"
# 初始化二叉树
# 初始化节点
n1 = TreeNode(val=1)
n2 = TreeNode(val=2)
n3 = TreeNode(val=3)
n4 = TreeNode(val=4)
n5 = TreeNode(val=5)
# 构建引用指向(即指针)
n1.left = n2
n1.right = n3
n2.left = n4
n2.right = n5
```

=== "C++"

```cpp title="binary_tree.cpp"
/* 初始化二叉树 */
// 初始化节点
TreeNode* n1 = new TreeNode(1);
TreeNode* n2 = new TreeNode(2);
TreeNode* n3 = new TreeNode(3);
TreeNode* n4 = new TreeNode(4);
TreeNode* n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;
```

=== "Java"

```java title="binary_tree.java"
// 初始化节点
TreeNode n1 = new TreeNode(1);
TreeNode n2 = new TreeNode(2);
TreeNode n3 = new TreeNode(3);
TreeNode n4 = new TreeNode(4);
TreeNode n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
```

=== "C#"

```csharp title="binary_tree.cs"
/* 初始化二叉树 */
// 初始化节点
TreeNode n1 = new(1);
TreeNode n2 = new(2);
TreeNode n3 = new(3);
TreeNode n4 = new(4);
TreeNode n5 = new(5);
// 构建引用指向(即指针)
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
```

=== "Go"

```go title="binary_tree.go"
/* 初始化二叉树 */
// 初始化节点
n1 := NewTreeNode(1)
n2 := NewTreeNode(2)
n3 := NewTreeNode(3)
n4 := NewTreeNode(4)
n5 := NewTreeNode(5)
// 构建引用指向(即指针)
n1.Left = n2
n1.Right = n3
n2.Left = n4
n2.Right = n5
```

=== "Swift"

```swift title="binary_tree.swift"
// 初始化节点
let n1 = TreeNode(x: 1)
let n2 = TreeNode(x: 2)
let n3 = TreeNode(x: 3)
let n4 = TreeNode(x: 4)
let n5 = TreeNode(x: 5)
// 构建引用指向(即指针)
n1.left = n2
n1.right = n3
n2.left = n4
n2.right = n5
```

=== "JS"

```javascript title="binary_tree.js"
/* 初始化二叉树 */
// 初始化节点
let n1 = new TreeNode(1),
    n2 = new TreeNode(2),
    n3 = new TreeNode(3),
    n4 = new TreeNode(4),
    n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
```

=== "TS"

```typescript title="binary_tree.ts"
/* 初始化二叉树 */
// 初始化节点
let n1 = new TreeNode(1),
    n2 = new TreeNode(2),
    n3 = new TreeNode(3),
    n4 = new TreeNode(4),
    n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
```

=== "Dart"

```dart title="binary_tree.dart"
/* 初始化二叉树 */
// 初始化节点
TreeNode n1 = new TreeNode(1);
TreeNode n2 = new TreeNode(2);
TreeNode n3 = new TreeNode(3);
TreeNode n4 = new TreeNode(4);
TreeNode n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
```

=== "Rust"

```rust title="binary_tree.rs"
// 初始化节点
let n1 = TreeNode::new(1);
let n2 = TreeNode::new(2);
let n3 = TreeNode::new(3);
let n4 = TreeNode::new(4);
let n5 = TreeNode::new(5);
// 构建引用指向(即指针)
n1.borrow_mut().left = Some(n2.clone());
n1.borrow_mut().right = Some(n3);
n2.borrow_mut().left = Some(n4);
n2.borrow_mut().right = Some(n5);
```

=== "C"

```c title="binary_tree.c"
/* 初始化二叉树 */
// 初始化节点
TreeNode *n1 = newTreeNode(1);
TreeNode *n2 = newTreeNode(2);
TreeNode *n3 = newTreeNode(3);
TreeNode *n4 = newTreeNode(4);
TreeNode *n5 = newTreeNode(5);
// 构建引用指向(即指针)
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;
```

=== "Zig"

```zig title="binary_tree.zig"

```

2.   插入与删除节点

与链表类似,在二叉树中插入与删除节点可以通过修改指针来实现。图 7-3 给出了一个示例。

在二叉树中插入与删除节点

图 7-3   在二叉树中插入与删除节点

=== "Python"

```python title="binary_tree.py"
# 插入与删除节点
p = TreeNode(0)
# 在 n1 -> n2 中间插入节点 P
n1.left = p
p.left = n2
# 删除节点 P
n1.left = n2
```

=== "C++"

```cpp title="binary_tree.cpp"
/* 插入与删除节点 */
TreeNode* P = new TreeNode(0);
// 在 n1 -> n2 中间插入节点 P
n1->left = P;
P->left = n2;
// 删除节点 P
n1->left = n2;
```

=== "Java"

```java title="binary_tree.java"
TreeNode P = new TreeNode(0);
// 在 n1 -> n2 中间插入节点 P
n1.left = P;
P.left = n2;
// 删除节点 P
n1.left = n2;
```

=== "C#"

```csharp title="binary_tree.cs"
/* 插入与删除节点 */
TreeNode P = new(0);
// 在 n1 -> n2 中间插入节点 P
n1.left = P;
P.left = n2;
// 删除节点 P
n1.left = n2;
```

=== "Go"

```go title="binary_tree.go"
/* 插入与删除节点 */
// 在 n1 -> n2 中间插入节点 P
p := NewTreeNode(0)
n1.Left = p
p.Left = n2
// 删除节点 P
n1.Left = n2
```

=== "Swift"

```swift title="binary_tree.swift"
let P = TreeNode(x: 0)
// 在 n1 -> n2 中间插入节点 P
n1.left = P
P.left = n2
// 删除节点 P
n1.left = n2
```

=== "JS"

```javascript title="binary_tree.js"
/* 插入与删除节点 */
let P = new TreeNode(0);
// 在 n1 -> n2 中间插入节点 P
n1.left = P;
P.left = n2;
// 删除节点 P
n1.left = n2;
```

=== "TS"

```typescript title="binary_tree.ts"
/* 插入与删除节点 */
const P = new TreeNode(0);
// 在 n1 -> n2 中间插入节点 P
n1.left = P;
P.left = n2;
// 删除节点 P
n1.left = n2;
```

=== "Dart"

```dart title="binary_tree.dart"
/* 插入与删除节点 */
TreeNode P = new TreeNode(0);
// 在 n1 -> n2 中间插入节点 P
n1.left = P;
P.left = n2;
// 删除节点 P
n1.left = n2;
```

=== "Rust"

```rust title="binary_tree.rs"
let p = TreeNode::new(0);
// 在 n1 -> n2 中间插入节点 P
n1.borrow_mut().left = Some(p.clone());
p.borrow_mut().left = Some(n2.clone());
// 删除节点 p
n1.borrow_mut().left = Some(n2);
```

=== "C"

```c title="binary_tree.c"
/* 插入与删除节点 */
TreeNode *P = newTreeNode(0);
// 在 n1 -> n2 中间插入节点 P
n1->left = P;
P->left = n2;
// 删除节点 P
n1->left = n2;
```

=== "Zig"

```zig title="binary_tree.zig"

```

!!! note

需要注意的是,插入节点可能会改变二叉树的原有逻辑结构,而删除节点通常意味着删除该节点及其所有子树。因此,在二叉树中,插入与删除操作通常是由一套操作配合完成的,以实现有实际意义的操作。

7.1.3   常见二叉树类型

1.   完美二叉树

「完美二叉树 perfect binary tree」所有层的节点都被完全填满。在完美二叉树中叶节点的度为 0 ,其余所有节点的度都为 2 ;若树高度为 h ,则节点总数为 2^{h+1} - 1 ,呈现标准的指数级关系,反映了自然界中常见的细胞分裂现象。

!!! tip

请注意,在中文社区中,完美二叉树常被称为「满二叉树」。

完美二叉树

图 7-4   完美二叉树

2.   完全二叉树

如图 7-5 所示,「完全二叉树 complete binary tree」只有最底层的节点未被填满且最底层节点尽量靠左填充。

完全二叉树

图 7-5   完全二叉树

3.   完满二叉树

如图 7-6 所示,「完满二叉树 full binary tree」除了叶节点之外其余所有节点都有两个子节点。

完满二叉树

图 7-6   完满二叉树

4.   平衡二叉树

如图 7-7 所示,「平衡二叉树 balanced binary tree」中任意节点的左子树和右子树的高度之差的绝对值不超过 1 。

平衡二叉树

图 7-7   平衡二叉树

7.1.4   二叉树的退化

图 7-8 展示了二叉树的理想与退化状态。当二叉树的每层节点都被填满时,达到“完美二叉树”;而当所有节点都偏向一侧时,二叉树退化为“链表”。

  • 完美二叉树是理想情况,可以充分发挥二叉树“分治”的优势。
  • 链表则是另一个极端,各项操作都变为线性操作,时间复杂度退化至 O(n)

二叉树的最佳与最差结构

图 7-8   二叉树的最佳与最差结构

如表 7-1 所示,在最佳和最差结构下,二叉树的叶节点数量、节点总数、高度等达到极大或极小值。

表 7-1   二叉树的最佳与最差情况

完美二叉树 链表
i 层的节点数量 2^{i-1} 1
高度 h 树的叶节点数量 2^h 1
高度 h 树的节点总数 2^{h+1} - 1 h + 1
节点总数 n 树的高度 \log_2 (n+1) - 1 n - 1