divide and conquer, backtracking, tree
6.3 KiB
Executable file
二叉树遍历
从物理结构的角度来看,树是一种基于链表的数据结构,因此其遍历方式是通过指针逐个访问节点。然而,树是一种非线性数据结构,这使得遍历树比遍历链表更加复杂,需要借助搜索算法来实现。
二叉树常见的遍历方式包括层序遍历、前序遍历、中序遍历和后序遍历等。
层序遍历
「层序遍历 Level-Order Traversal」从顶部到底部逐层遍历二叉树,并在每一层按照从左到右的顺序访问节点。
层序遍历本质上属于「广度优先搜索 Breadth-First Traversal」,它体现了一种“一圈一圈向外扩展”的逐层搜索方式。
广度优先遍历通常借助「队列」来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进”的规则,两者背后的思想是一致的。
=== "Java"
```java title="binary_tree_bfs.java"
[class]{binary_tree_bfs}-[func]{levelOrder}
```
=== "C++"
```cpp title="binary_tree_bfs.cpp"
[class]{}-[func]{levelOrder}
```
=== "Python"
```python title="binary_tree_bfs.py"
[class]{}-[func]{level_order}
```
=== "Go"
```go title="binary_tree_bfs.go"
[class]{}-[func]{levelOrder}
```
=== "JavaScript"
```javascript title="binary_tree_bfs.js"
[class]{}-[func]{levelOrder}
```
=== "TypeScript"
```typescript title="binary_tree_bfs.ts"
[class]{}-[func]{levelOrder}
```
=== "C"
```c title="binary_tree_bfs.c"
[class]{}-[func]{levelOrder}
```
=== "C#"
```csharp title="binary_tree_bfs.cs"
[class]{binary_tree_bfs}-[func]{levelOrder}
```
=== "Swift"
```swift title="binary_tree_bfs.swift"
[class]{}-[func]{levelOrder}
```
=== "Zig"
```zig title="binary_tree_bfs.zig"
[class]{}-[func]{levelOrder}
```
=== "Dart"
```dart title="binary_tree_bfs.dart"
[class]{}-[func]{levelOrder}
```
时间复杂度:所有节点被访问一次,使用 O(n)
时间,其中 n
为节点数量。
空间复杂度:在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 \frac{n + 1}{2}
个节点,占用 O(n)
空间。
前序、中序、后序遍历
相应地,前序、中序和后序遍历都属于「深度优先遍历 Depth-First Traversal」,它体现了一种“先走到尽头,再回溯继续”的遍历方式。
如下图所示,左侧是深度优先遍历的示意图,右上方是对应的递归代码。深度优先遍历就像是绕着整个二叉树的外围“走”一圈,在这个过程中,在每个节点都会遇到三个位置,分别对应前序遍历、中序遍历和后序遍历。
以下给出了实现代码,请配合上图理解深度优先遍历的递归过程。
=== "Java"
```java title="binary_tree_dfs.java"
[class]{binary_tree_dfs}-[func]{preOrder}
[class]{binary_tree_dfs}-[func]{inOrder}
[class]{binary_tree_dfs}-[func]{postOrder}
```
=== "C++"
```cpp title="binary_tree_dfs.cpp"
[class]{}-[func]{preOrder}
[class]{}-[func]{inOrder}
[class]{}-[func]{postOrder}
```
=== "Python"
```python title="binary_tree_dfs.py"
[class]{}-[func]{pre_order}
[class]{}-[func]{in_order}
[class]{}-[func]{post_order}
```
=== "Go"
```go title="binary_tree_dfs.go"
[class]{}-[func]{preOrder}
[class]{}-[func]{inOrder}
[class]{}-[func]{postOrder}
```
=== "JavaScript"
```javascript title="binary_tree_dfs.js"
[class]{}-[func]{preOrder}
[class]{}-[func]{inOrder}
[class]{}-[func]{postOrder}
```
=== "TypeScript"
```typescript title="binary_tree_dfs.ts"
[class]{}-[func]{preOrder}
[class]{}-[func]{inOrder}
[class]{}-[func]{postOrder}
```
=== "C"
```c title="binary_tree_dfs.c"
[class]{}-[func]{preOrder}
[class]{}-[func]{inOrder}
[class]{}-[func]{postOrder}
```
=== "C#"
```csharp title="binary_tree_dfs.cs"
[class]{binary_tree_dfs}-[func]{preOrder}
[class]{binary_tree_dfs}-[func]{inOrder}
[class]{binary_tree_dfs}-[func]{postOrder}
```
=== "Swift"
```swift title="binary_tree_dfs.swift"
[class]{}-[func]{preOrder}
[class]{}-[func]{inOrder}
[class]{}-[func]{postOrder}
```
=== "Zig"
```zig title="binary_tree_dfs.zig"
[class]{}-[func]{preOrder}
[class]{}-[func]{inOrder}
[class]{}-[func]{postOrder}
```
=== "Dart"
```dart title="binary_tree_dfs.dart"
[class]{}-[func]{preOrder}
[class]{}-[func]{inOrder}
[class]{}-[func]{postOrder}
```
时间复杂度:所有节点被访问一次,使用 O(n)
时间,其中 n
为节点数量。
空间复杂度:在最差情况下,即树退化为链表时,递归深度达到 n
,系统占用 O(n)
栈帧空间。
!!! note
我们也可以不使用递归,仅基于迭代实现前、中、后序遍历,有兴趣的同学可以自行研究。
下图展示了前序遍历二叉树的递归过程,其可分为“递”和“归”两个逆向的部分:
- “递”表示开启新方法,程序在此过程中访问下一个节点。
- “归”表示函数返回,代表当前节点已经访问完毕。