mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 00:26:28 +08:00
88b00151b0
in all the source docs.
221 lines
5.5 KiB
Markdown
Executable file
221 lines
5.5 KiB
Markdown
Executable file
---
|
||
comments: true
|
||
---
|
||
|
||
# 二叉树遍历
|
||
|
||
从物理结构角度看,树是一种基于链表的数据结构,因此遍历方式也是通过指针(即引用)逐个遍历结点。同时,树还是一种非线性数据结构,这导致遍历树比遍历链表更加复杂,需要使用搜索算法来实现。
|
||
|
||
常见的二叉树遍历方式有层序遍历、前序遍历、中序遍历、后序遍历。
|
||
|
||
## 层序遍历
|
||
|
||
「层序遍历 Level-Order Traversal」从顶至底、一层一层地遍历二叉树,并在每层中按照从左到右的顺序访问结点。
|
||
|
||
层序遍历本质上是「广度优先搜索 Breadth-First Traversal」,其体现着一种“一圈一圈向外”的层进遍历方式。
|
||
|
||
![binary_tree_bfs](binary_tree_traversal.assets/binary_tree_bfs.png)
|
||
|
||
<p align="center"> Fig. 二叉树的层序遍历 </p>
|
||
|
||
### 算法实现
|
||
|
||
广度优先遍历一般借助「队列」来实现。队列的规则是“先进先出”,广度优先遍历的规则是 ”一层层平推“ ,两者背后的思想是一致的。
|
||
|
||
=== "Java"
|
||
|
||
```java title="binary_tree_bfs.java"
|
||
[class]{binary_tree_bfs}-[func]{levelOrder}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="binary_tree_bfs.cpp"
|
||
[class]{}-[func]{levelOrder}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="binary_tree_bfs.py"
|
||
[class]{}-[func]{level_order}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="binary_tree_bfs.go"
|
||
[class]{}-[func]{levelOrder}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="binary_tree_bfs.js"
|
||
[class]{}-[func]{levelOrder}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="binary_tree_bfs.ts"
|
||
[class]{}-[func]{levelOrder}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="binary_tree_bfs.c"
|
||
[class]{}-[func]{levelOrder}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="binary_tree_bfs.cs"
|
||
[class]{binary_tree_bfs}-[func]{levelOrder}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="binary_tree_bfs.swift"
|
||
[class]{}-[func]{levelOrder}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="binary_tree_bfs.zig"
|
||
[class]{}-[func]{levelOrder}
|
||
```
|
||
|
||
### 复杂度分析
|
||
|
||
**时间复杂度**:所有结点被访问一次,使用 $O(n)$ 时间,其中 $n$ 为结点数量。
|
||
|
||
**空间复杂度**:当为满二叉树时达到最差情况,遍历到最底层前,队列中最多同时存在 $\frac{n + 1}{2}$ 个结点,使用 $O(n)$ 空间。
|
||
|
||
## 前序、中序、后序遍历
|
||
|
||
相对地,前、中、后序遍历皆属于「深度优先遍历 Depth-First Traversal」,其体现着一种“先走到尽头,再回头继续”的回溯遍历方式。
|
||
|
||
如下图所示,左侧是深度优先遍历的的示意图,右上方是对应的递归实现代码。深度优先遍历就像是绕着整个二叉树的外围“走”一圈,走的过程中,在每个结点都会遇到三个位置,分别对应前序遍历、中序遍历、后序遍历。
|
||
|
||
![binary_tree_dfs](binary_tree_traversal.assets/binary_tree_dfs.png)
|
||
|
||
<p align="center"> Fig. 二叉树的前 / 中 / 后序遍历 </p>
|
||
|
||
<div class="center-table" markdown>
|
||
|
||
| 位置 | 含义 | 此处访问结点时对应 |
|
||
| ---------- | ------------------------------------ | ----------------------------- |
|
||
| 橙色圆圈处 | 刚进入此结点,即将访问该结点的左子树 | 前序遍历 Pre-Order Traversal |
|
||
| 蓝色圆圈处 | 已访问完左子树,即将访问右子树 | 中序遍历 In-Order Traversal |
|
||
| 紫色圆圈处 | 已访问完左子树和右子树,即将返回 | 后序遍历 Post-Order Traversal |
|
||
|
||
</div>
|
||
|
||
### 算法实现
|
||
|
||
=== "Java"
|
||
|
||
```java title="binary_tree_dfs.java"
|
||
[class]{binary_tree_dfs}-[func]{preOrder}
|
||
|
||
[class]{binary_tree_dfs}-[func]{inOrder}
|
||
|
||
[class]{binary_tree_dfs}-[func]{postOrder}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="binary_tree_dfs.cpp"
|
||
[class]{}-[func]{preOrder}
|
||
|
||
[class]{}-[func]{inOrder}
|
||
|
||
[class]{}-[func]{postOrder}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="binary_tree_dfs.py"
|
||
[class]{}-[func]{pre_order}
|
||
|
||
[class]{}-[func]{in_order}
|
||
|
||
[class]{}-[func]{post_order}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="binary_tree_dfs.go"
|
||
[class]{}-[func]{preOrder}
|
||
|
||
[class]{}-[func]{inOrder}
|
||
|
||
[class]{}-[func]{postOrder}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="binary_tree_dfs.js"
|
||
[class]{}-[func]{preOrder}
|
||
|
||
[class]{}-[func]{inOrder}
|
||
|
||
[class]{}-[func]{postOrder}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="binary_tree_dfs.ts"
|
||
[class]{}-[func]{preOrder}
|
||
|
||
[class]{}-[func]{inOrder}
|
||
|
||
[class]{}-[func]{postOrder}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="binary_tree_dfs.c"
|
||
[class]{}-[func]{preOrder}
|
||
|
||
[class]{}-[func]{inOrder}
|
||
|
||
[class]{}-[func]{postOrder}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="binary_tree_dfs.cs"
|
||
[class]{binary_tree_dfs}-[func]{preOrder}
|
||
|
||
[class]{binary_tree_dfs}-[func]{inOrder}
|
||
|
||
[class]{binary_tree_dfs}-[func]{postOrder}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="binary_tree_dfs.swift"
|
||
[class]{}-[func]{preOrder}
|
||
|
||
[class]{}-[func]{inOrder}
|
||
|
||
[class]{}-[func]{postOrder}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="binary_tree_dfs.zig"
|
||
[class]{}-[func]{preOrder}
|
||
|
||
[class]{}-[func]{inOrder}
|
||
|
||
[class]{}-[func]{postOrder}
|
||
```
|
||
|
||
!!! note
|
||
|
||
使用循环一样可以实现前、中、后序遍历,但代码相对繁琐,有兴趣的同学可以自行实现。
|
||
|
||
### 复杂度分析
|
||
|
||
**时间复杂度**:所有结点被访问一次,使用 $O(n)$ 时间,其中 $n$ 为结点数量。
|
||
|
||
**空间复杂度**:当树退化为链表时达到最差情况,递归深度达到 $n$ ,系统使用 $O(n)$ 栈帧空间。
|