* First commit * Update mkdocs.yml * Translate all the docs to traditional Chinese * Translate the code files. * Translate the docker file * Fix mkdocs.yml * Translate all the figures from SC to TC * 二叉搜尋樹 -> 二元搜尋樹 * Update terminology. * Update terminology * 构造函数/构造方法 -> 建構子 异或 -> 互斥或 * 擴充套件 -> 擴展 * constant - 常量 - 常數 * 類 -> 類別 * AVL -> AVL 樹 * 數組 -> 陣列 * 係統 -> 系統 斐波那契數列 -> 費波那契數列 運算元量 -> 運算量 引數 -> 參數 * 聯絡 -> 關聯 * 麵試 -> 面試 * 面向物件 -> 物件導向 歸併排序 -> 合併排序 范式 -> 範式 * Fix 算法 -> 演算法 * 錶示 -> 表示 反碼 -> 一補數 補碼 -> 二補數 列列尾部 -> 佇列尾部 區域性性 -> 區域性 一摞 -> 一疊 * Synchronize with main branch * 賬號 -> 帳號 推匯 -> 推導 * Sync with main branch * First commit * Update mkdocs.yml * Translate all the docs to traditional Chinese * Translate the code files. * Translate the docker file * Fix mkdocs.yml * Translate all the figures from SC to TC * 二叉搜尋樹 -> 二元搜尋樹 * Update terminology * 构造函数/构造方法 -> 建構子 异或 -> 互斥或 * 擴充套件 -> 擴展 * constant - 常量 - 常數 * 類 -> 類別 * AVL -> AVL 樹 * 數組 -> 陣列 * 係統 -> 系統 斐波那契數列 -> 費波那契數列 運算元量 -> 運算量 引數 -> 參數 * 聯絡 -> 關聯 * 麵試 -> 面試 * 面向物件 -> 物件導向 歸併排序 -> 合併排序 范式 -> 範式 * Fix 算法 -> 演算法 * 錶示 -> 表示 反碼 -> 一補數 補碼 -> 二補數 列列尾部 -> 佇列尾部 區域性性 -> 區域性 一摞 -> 一疊 * Synchronize with main branch * 賬號 -> 帳號 推匯 -> 推導 * Sync with main branch * Update terminology.md * 操作数量(num. of operations)-> 操作數量 * 字首和->前綴和 * Update figures * 歸 -> 迴 記憶體洩漏 -> 記憶體流失 * Fix the bug of the file filter * 支援 -> 支持 Add zh-Hant/README.md * Add the zh-Hant chapter covers. Bug fixes. * 外掛 -> 擴充功能 * Add the landing page for zh-Hant version * Unify the font of the chapter covers for the zh, en, and zh-Hant version * Move zh-Hant/ to zh-hant/ * Translate terminology.md to traditional Chinese
9 KiB
動態規劃解題思路
上兩節介紹了動態規劃問題的主要特徵,接下來我們一起探究兩個更加實用的問題。
- 如何判斷一個問題是不是動態規劃問題?
- 求解動態規劃問題該從何處入手,完整步驟是什麼?
問題判斷
總的來說,如果一個問題包含重疊子問題、最優子結構,並滿足無後效性,那麼它通常適合用動態規劃求解。然而,我們很難從問題描述中直接提取出這些特性。因此我們通常會放寬條件,先觀察問題是否適合使用回溯(窮舉)解決。
適合用回溯解決的問題通常滿足“決策樹模型”,這種問題可以使用樹形結構來描述,其中每一個節點代表一個決策,每一條路徑代表一個決策序列。
換句話說,如果問題包含明確的決策概念,並且解是透過一系列決策產生的,那麼它就滿足決策樹模型,通常可以使用回溯來解決。
在此基礎上,動態規劃問題還有一些判斷的“加分項”。
- 問題包含最大(小)或最多(少)等最最佳化描述。
- 問題的狀態能夠使用一個串列、多維矩陣或樹來表示,並且一個狀態與其周圍的狀態存在遞推關係。
相應地,也存在一些“減分項”。
- 問題的目標是找出所有可能的解決方案,而不是找出最優解。
- 問題描述中有明顯的排列組合的特徵,需要返回具體的多個方案。
如果一個問題滿足決策樹模型,並具有較為明顯的“加分項”,我們就可以假設它是一個動態規劃問題,並在求解過程中驗證它。
問題求解步驟
動態規劃的解題流程會因問題的性質和難度而有所不同,但通常遵循以下步驟:描述決策,定義狀態,建立 dp
表,推導狀態轉移方程,確定邊界條件等。
為了更形象地展示解題步驟,我們使用一個經典問題“最小路徑和”來舉例。
!!! question
給定一個 $n \times m$ 的二維網格 `grid` ,網格中的每個單元格包含一個非負整數,表示該單元格的代價。機器人以左上角單元格為起始點,每次只能向下或者向右移動一步,直至到達右下角單元格。請返回從左上角到右下角的最小路徑和。
下圖展示了一個例子,給定網格的最小路徑和為 13
。
第一步:思考每輪的決策,定義狀態,從而得到 dp
表
本題的每一輪的決策就是從當前格子向下或向右走一步。設當前格子的行列索引為 [i, j]
,則向下或向右走一步後,索引變為 [i+1, j]
或 [i, j+1]
。因此,狀態應包含行索引和列索引兩個變數,記為 [i, j]
。
狀態 [i, j]
對應的子問題為:從起始點 [0, 0]
走到 [i, j]
的最小路徑和,解記為 dp[i, j]
。
至此,我們就得到了下圖所示的二維 dp
矩陣,其尺寸與輸入網格 grid
相同。
!!! note
動態規劃和回溯過程可以描述為一個決策序列,而狀態由所有決策變數構成。它應當包含描述解題進度的所有變數,其包含了足夠的資訊,能夠用來推導出下一個狀態。
每個狀態都對應一個子問題,我們會定義一個 $dp$ 表來儲存所有子問題的解,狀態的每個獨立變數都是 $dp$ 表的一個維度。從本質上看,$dp$ 表是狀態和子問題的解之間的對映。
第二步:找出最優子結構,進而推導出狀態轉移方程
對於狀態 [i, j]
,它只能從上邊格子 [i-1, j]
和左邊格子 [i, j-1]
轉移而來。因此最優子結構為:到達 [i, j]
的最小路徑和由 [i, j-1]
的最小路徑和與 [i-1, j]
的最小路徑和中較小的那一個決定。
根據以上分析,可推出下圖所示的狀態轉移方程:
$$
dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
!!! note
根據定義好的 $dp$ 表,思考原問題和子問題的關係,找出透過子問題的最優解來構造原問題的最優解的方法,即最優子結構。
一旦我們找到了最優子結構,就可以使用它來構建出狀態轉移方程。
第三步:確定邊界條件和狀態轉移順序
在本題中,處在首行的狀態只能從其左邊的狀態得來,處在首列的狀態只能從其上邊的狀態得來,因此首行 i = 0
和首列 j = 0
是邊界條件。
如下圖所示,由於每個格子是由其左方格子和上方格子轉移而來,因此我們使用迴圈來走訪矩陣,外迴圈走訪各行,內迴圈走訪各列。
!!! note
邊界條件在動態規劃中用於初始化 $dp$ 表,在搜尋中用於剪枝。
狀態轉移順序的核心是要保證在計算當前問題的解時,所有它依賴的更小子問題的解都已經被正確地計算出來。
根據以上分析,我們已經可以直接寫出動態規劃程式碼。然而子問題分解是一種從頂至底的思想,因此按照“暴力搜尋 \rightarrow
記憶化搜尋 \rightarrow
動態規劃”的順序實現更加符合思維習慣。
方法一:暴力搜尋
從狀態 [i, j]
開始搜尋,不斷分解為更小的狀態 [i-1, j]
和 [i, j-1]
,遞迴函式包括以下要素。
- 遞迴參數:狀態
[i, j]
。 - 返回值:從
[0, 0]
到[i, j]
的最小路徑和dp[i, j]
。 - 終止條件:當
i = 0
且j = 0
時,返回代價grid[0, 0]
。 - 剪枝:當
i < 0
時或j < 0
時索引越界,此時返回代價+\infty
,代表不可行。
實現程式碼如下:
[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dfs}
下圖給出了以 dp[2, 1]
為根節點的遞迴樹,其中包含一些重疊子問題,其數量會隨著網格 grid
的尺寸變大而急劇增多。
從本質上看,造成重疊子問題的原因為:存在多條路徑可以從左上角到達某一單元格。
每個狀態都有向下和向右兩種選擇,從左上角走到右下角總共需要 m + n - 2
步,所以最差時間複雜度為 O(2^{m + n})
。請注意,這種計算方式未考慮臨近網格邊界的情況,當到達網路邊界時只剩下一種選擇,因此實際的路徑數量會少一些。
方法二:記憶化搜尋
我們引入一個和網格 grid
相同尺寸的記憶串列 mem
,用於記錄各個子問題的解,並將重疊子問題進行剪枝:
[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dfs_mem}
如下圖所示,在引入記憶化後,所有子問題的解只需計算一次,因此時間複雜度取決於狀態總數,即網格尺寸 O(nm)
。
方法三:動態規劃
基於迭代實現動態規劃解法,程式碼如下所示:
[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dp}
下圖展示了最小路徑和的狀態轉移過程,其走訪了整個網格,因此時間複雜度為 $O(nm)$ 。
陣列 dp
大小為 n \times m
,因此空間複雜度為 $O(nm)$ 。
空間最佳化
由於每個格子只與其左邊和上邊的格子有關,因此我們可以只用一個單行陣列來實現 dp
表。
請注意,因為陣列 dp
只能表示一行的狀態,所以我們無法提前初始化首列狀態,而是在走訪每行時更新它:
[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dp_comp}