mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 15:26:29 +08:00
883 lines
45 KiB
Markdown
Executable file
883 lines
45 KiB
Markdown
Executable file
---
|
|
comments: true
|
|
---
|
|
|
|
# 7.2 Binary tree traversal
|
|
|
|
From the perspective of physical structure, a tree is a data structure based on linked lists, hence its traversal method involves accessing nodes one by one through pointers. However, a tree is a non-linear data structure, which makes traversing a tree more complex than traversing a linked list, requiring the assistance of search algorithms to achieve.
|
|
|
|
Common traversal methods for binary trees include level-order traversal, preorder traversal, inorder traversal, and postorder traversal, among others.
|
|
|
|
## 7.2.1 Level-order traversal
|
|
|
|
As shown in the Figure 7-9 , "level-order traversal" traverses the binary tree from top to bottom, layer by layer, and accesses nodes in each layer in a left-to-right order.
|
|
|
|
Level-order traversal essentially belongs to "breadth-first traversal", also known as "breadth-first search (BFS)", which embodies a "circumferentially outward expanding" layer-by-layer traversal method.
|
|
|
|
![Level-order traversal of a binary tree](binary_tree_traversal.assets/binary_tree_bfs.png){ class="animation-figure" }
|
|
|
|
<p align="center"> Figure 7-9 Level-order traversal of a binary tree </p>
|
|
|
|
### 1. Code implementation
|
|
|
|
Breadth-first traversal is usually implemented with the help of a "queue". The queue follows the "first in, first out" rule, while breadth-first traversal follows the "layer-by-layer progression" rule, the underlying ideas of the two are consistent. The implementation code is as follows:
|
|
|
|
=== "Python"
|
|
|
|
```python title="binary_tree_bfs.py"
|
|
def level_order(root: TreeNode | None) -> list[int]:
|
|
"""层序遍历"""
|
|
# 初始化队列,加入根节点
|
|
queue: deque[TreeNode] = deque()
|
|
queue.append(root)
|
|
# 初始化一个列表,用于保存遍历序列
|
|
res = []
|
|
while queue:
|
|
node: TreeNode = queue.popleft() # 队列出队
|
|
res.append(node.val) # 保存节点值
|
|
if node.left is not None:
|
|
queue.append(node.left) # 左子节点入队
|
|
if node.right is not None:
|
|
queue.append(node.right) # 右子节点入队
|
|
return res
|
|
```
|
|
|
|
=== "C++"
|
|
|
|
```cpp title="binary_tree_bfs.cpp"
|
|
/* 层序遍历 */
|
|
vector<int> levelOrder(TreeNode *root) {
|
|
// 初始化队列,加入根节点
|
|
queue<TreeNode *> queue;
|
|
queue.push(root);
|
|
// 初始化一个列表,用于保存遍历序列
|
|
vector<int> vec;
|
|
while (!queue.empty()) {
|
|
TreeNode *node = queue.front();
|
|
queue.pop(); // 队列出队
|
|
vec.push_back(node->val); // 保存节点值
|
|
if (node->left != nullptr)
|
|
queue.push(node->left); // 左子节点入队
|
|
if (node->right != nullptr)
|
|
queue.push(node->right); // 右子节点入队
|
|
}
|
|
return vec;
|
|
}
|
|
```
|
|
|
|
=== "Java"
|
|
|
|
```java title="binary_tree_bfs.java"
|
|
/* 层序遍历 */
|
|
List<Integer> levelOrder(TreeNode root) {
|
|
// 初始化队列,加入根节点
|
|
Queue<TreeNode> queue = new LinkedList<>();
|
|
queue.add(root);
|
|
// 初始化一个列表,用于保存遍历序列
|
|
List<Integer> list = new ArrayList<>();
|
|
while (!queue.isEmpty()) {
|
|
TreeNode node = queue.poll(); // 队列出队
|
|
list.add(node.val); // 保存节点值
|
|
if (node.left != null)
|
|
queue.offer(node.left); // 左子节点入队
|
|
if (node.right != null)
|
|
queue.offer(node.right); // 右子节点入队
|
|
}
|
|
return list;
|
|
}
|
|
```
|
|
|
|
=== "C#"
|
|
|
|
```csharp title="binary_tree_bfs.cs"
|
|
/* 层序遍历 */
|
|
List<int> LevelOrder(TreeNode root) {
|
|
// 初始化队列,加入根节点
|
|
Queue<TreeNode> queue = new();
|
|
queue.Enqueue(root);
|
|
// 初始化一个列表,用于保存遍历序列
|
|
List<int> list = [];
|
|
while (queue.Count != 0) {
|
|
TreeNode node = queue.Dequeue(); // 队列出队
|
|
list.Add(node.val!.Value); // 保存节点值
|
|
if (node.left != null)
|
|
queue.Enqueue(node.left); // 左子节点入队
|
|
if (node.right != null)
|
|
queue.Enqueue(node.right); // 右子节点入队
|
|
}
|
|
return list;
|
|
}
|
|
```
|
|
|
|
=== "Go"
|
|
|
|
```go title="binary_tree_bfs.go"
|
|
/* 层序遍历 */
|
|
func levelOrder(root *TreeNode) []any {
|
|
// 初始化队列,加入根节点
|
|
queue := list.New()
|
|
queue.PushBack(root)
|
|
// 初始化一个切片,用于保存遍历序列
|
|
nums := make([]any, 0)
|
|
for queue.Len() > 0 {
|
|
// 队列出队
|
|
node := queue.Remove(queue.Front()).(*TreeNode)
|
|
// 保存节点值
|
|
nums = append(nums, node.Val)
|
|
if node.Left != nil {
|
|
// 左子节点入队
|
|
queue.PushBack(node.Left)
|
|
}
|
|
if node.Right != nil {
|
|
// 右子节点入队
|
|
queue.PushBack(node.Right)
|
|
}
|
|
}
|
|
return nums
|
|
}
|
|
```
|
|
|
|
=== "Swift"
|
|
|
|
```swift title="binary_tree_bfs.swift"
|
|
/* 层序遍历 */
|
|
func levelOrder(root: TreeNode) -> [Int] {
|
|
// 初始化队列,加入根节点
|
|
var queue: [TreeNode] = [root]
|
|
// 初始化一个列表,用于保存遍历序列
|
|
var list: [Int] = []
|
|
while !queue.isEmpty {
|
|
let node = queue.removeFirst() // 队列出队
|
|
list.append(node.val) // 保存节点值
|
|
if let left = node.left {
|
|
queue.append(left) // 左子节点入队
|
|
}
|
|
if let right = node.right {
|
|
queue.append(right) // 右子节点入队
|
|
}
|
|
}
|
|
return list
|
|
}
|
|
```
|
|
|
|
=== "JS"
|
|
|
|
```javascript title="binary_tree_bfs.js"
|
|
/* 层序遍历 */
|
|
function levelOrder(root) {
|
|
// 初始化队列,加入根节点
|
|
const queue = [root];
|
|
// 初始化一个列表,用于保存遍历序列
|
|
const list = [];
|
|
while (queue.length) {
|
|
let node = queue.shift(); // 队列出队
|
|
list.push(node.val); // 保存节点值
|
|
if (node.left) queue.push(node.left); // 左子节点入队
|
|
if (node.right) queue.push(node.right); // 右子节点入队
|
|
}
|
|
return list;
|
|
}
|
|
```
|
|
|
|
=== "TS"
|
|
|
|
```typescript title="binary_tree_bfs.ts"
|
|
/* 层序遍历 */
|
|
function levelOrder(root: TreeNode | null): number[] {
|
|
// 初始化队列,加入根节点
|
|
const queue = [root];
|
|
// 初始化一个列表,用于保存遍历序列
|
|
const list: number[] = [];
|
|
while (queue.length) {
|
|
let node = queue.shift() as TreeNode; // 队列出队
|
|
list.push(node.val); // 保存节点值
|
|
if (node.left) {
|
|
queue.push(node.left); // 左子节点入队
|
|
}
|
|
if (node.right) {
|
|
queue.push(node.right); // 右子节点入队
|
|
}
|
|
}
|
|
return list;
|
|
}
|
|
```
|
|
|
|
=== "Dart"
|
|
|
|
```dart title="binary_tree_bfs.dart"
|
|
/* 层序遍历 */
|
|
List<int> levelOrder(TreeNode? root) {
|
|
// 初始化队列,加入根节点
|
|
Queue<TreeNode?> queue = Queue();
|
|
queue.add(root);
|
|
// 初始化一个列表,用于保存遍历序列
|
|
List<int> res = [];
|
|
while (queue.isNotEmpty) {
|
|
TreeNode? node = queue.removeFirst(); // 队列出队
|
|
res.add(node!.val); // 保存节点值
|
|
if (node.left != null) queue.add(node.left); // 左子节点入队
|
|
if (node.right != null) queue.add(node.right); // 右子节点入队
|
|
}
|
|
return res;
|
|
}
|
|
```
|
|
|
|
=== "Rust"
|
|
|
|
```rust title="binary_tree_bfs.rs"
|
|
/* 层序遍历 */
|
|
fn level_order(root: &Rc<RefCell<TreeNode>>) -> Vec<i32> {
|
|
// 初始化队列,加入根节点
|
|
let mut que = VecDeque::new();
|
|
que.push_back(Rc::clone(&root));
|
|
// 初始化一个列表,用于保存遍历序列
|
|
let mut vec = Vec::new();
|
|
|
|
while let Some(node) = que.pop_front() {
|
|
// 队列出队
|
|
vec.push(node.borrow().val); // 保存节点值
|
|
if let Some(left) = node.borrow().left.as_ref() {
|
|
que.push_back(Rc::clone(left)); // 左子节点入队
|
|
}
|
|
if let Some(right) = node.borrow().right.as_ref() {
|
|
que.push_back(Rc::clone(right)); // 右子节点入队
|
|
};
|
|
}
|
|
vec
|
|
}
|
|
```
|
|
|
|
=== "C"
|
|
|
|
```c title="binary_tree_bfs.c"
|
|
/* 层序遍历 */
|
|
int *levelOrder(TreeNode *root, int *size) {
|
|
/* 辅助队列 */
|
|
int front, rear;
|
|
int index, *arr;
|
|
TreeNode *node;
|
|
TreeNode **queue;
|
|
|
|
/* 辅助队列 */
|
|
queue = (TreeNode **)malloc(sizeof(TreeNode *) * MAX_SIZE);
|
|
// 队列指针
|
|
front = 0, rear = 0;
|
|
// 加入根节点
|
|
queue[rear++] = root;
|
|
// 初始化一个列表,用于保存遍历序列
|
|
/* 辅助数组 */
|
|
arr = (int *)malloc(sizeof(int) * MAX_SIZE);
|
|
// 数组指针
|
|
index = 0;
|
|
while (front < rear) {
|
|
// 队列出队
|
|
node = queue[front++];
|
|
// 保存节点值
|
|
arr[index++] = node->val;
|
|
if (node->left != NULL) {
|
|
// 左子节点入队
|
|
queue[rear++] = node->left;
|
|
}
|
|
if (node->right != NULL) {
|
|
// 右子节点入队
|
|
queue[rear++] = node->right;
|
|
}
|
|
}
|
|
// 更新数组长度的值
|
|
*size = index;
|
|
arr = realloc(arr, sizeof(int) * (*size));
|
|
|
|
// 释放辅助数组空间
|
|
free(queue);
|
|
return arr;
|
|
}
|
|
```
|
|
|
|
=== "Kotlin"
|
|
|
|
```kotlin title="binary_tree_bfs.kt"
|
|
/* 层序遍历 */
|
|
fun levelOrder(root: TreeNode?): MutableList<Int> {
|
|
// 初始化队列,加入根节点
|
|
val queue = LinkedList<TreeNode?>()
|
|
queue.add(root)
|
|
// 初始化一个列表,用于保存遍历序列
|
|
val list = ArrayList<Int>()
|
|
while (!queue.isEmpty()) {
|
|
val node = queue.poll() // 队列出队
|
|
list.add(node?.value!!) // 保存节点值
|
|
if (node.left != null) queue.offer(node.left) // 左子节点入队
|
|
|
|
if (node.right != null) queue.offer(node.right) // 右子节点入队
|
|
}
|
|
return list
|
|
}
|
|
```
|
|
|
|
=== "Ruby"
|
|
|
|
```ruby title="binary_tree_bfs.rb"
|
|
[class]{}-[func]{level_order}
|
|
```
|
|
|
|
=== "Zig"
|
|
|
|
```zig title="binary_tree_bfs.zig"
|
|
// 层序遍历
|
|
fn levelOrder(comptime T: type, mem_allocator: std.mem.Allocator, root: *inc.TreeNode(T)) !std.ArrayList(T) {
|
|
// 初始化队列,加入根节点
|
|
const L = std.TailQueue(*inc.TreeNode(T));
|
|
var queue = L{};
|
|
var root_node = try mem_allocator.create(L.Node);
|
|
root_node.data = root;
|
|
queue.append(root_node);
|
|
// 初始化一个列表,用于保存遍历序列
|
|
var list = std.ArrayList(T).init(std.heap.page_allocator);
|
|
while (queue.len > 0) {
|
|
var queue_node = queue.popFirst().?; // 队列出队
|
|
var node = queue_node.data;
|
|
try list.append(node.val); // 保存节点值
|
|
if (node.left != null) {
|
|
var tmp_node = try mem_allocator.create(L.Node);
|
|
tmp_node.data = node.left.?;
|
|
queue.append(tmp_node); // 左子节点入队
|
|
}
|
|
if (node.right != null) {
|
|
var tmp_node = try mem_allocator.create(L.Node);
|
|
tmp_node.data = node.right.?;
|
|
queue.append(tmp_node); // 右子节点入队
|
|
}
|
|
}
|
|
return list;
|
|
}
|
|
```
|
|
|
|
??? pythontutor "Code Visualization"
|
|
|
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=from%20collections%20import%20deque%0A%0Aclass%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%8F%89%E6%A0%91%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.left%3A%20TreeNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%B7%A6%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%20%20%20%20%20%20%20%20self.right%3A%20TreeNode%20%7C%20None%20%3D%20None%20%23%20%E5%8F%B3%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0Adef%20list_to_tree_dfs%28arr%3A%20list%5Bint%5D,%20i%3A%20int%29%20-%3E%20TreeNode%20%7C%20None%3A%0A%20%20%20%20%22%22%22%E5%B0%86%E5%88%97%E8%A1%A8%E5%8F%8D%E5%BA%8F%E5%88%97%E5%8C%96%E4%B8%BA%E4%BA%8C%E5%8F%89%E6%A0%91%EF%BC%9A%E9%80%92%E5%BD%92%22%22%22%0A%20%20%20%20%23%20%E5%A6%82%E6%9E%9C%E7%B4%A2%E5%BC%95%E8%B6%85%E5%87%BA%E6%95%B0%E7%BB%84%E9%95%BF%E5%BA%A6%EF%BC%8C%E6%88%96%E8%80%85%E5%AF%B9%E5%BA%94%E7%9A%84%E5%85%83%E7%B4%A0%E4%B8%BA%20None%20%EF%BC%8C%E5%88%99%E8%BF%94%E5%9B%9E%20None%0A%20%20%20%20if%20i%20%3C%200%20or%20i%20%3E%3D%20len%28arr%29%20or%20arr%5Bi%5D%20is%20None%3A%0A%20%20%20%20%20%20%20%20return%20None%0A%20%20%20%20%23%20%E6%9E%84%E5%BB%BA%E5%BD%93%E5%89%8D%E8%8A%82%E7%82%B9%0A%20%20%20%20root%20%3D%20TreeNode%28arr%5Bi%5D%29%0A%20%20%20%20%23%20%E9%80%92%E5%BD%92%E6%9E%84%E5%BB%BA%E5%B7%A6%E5%8F%B3%E5%AD%90%E6%A0%91%0A%20%20%20%20root.left%20%3D%20list_to_tree_dfs%28arr,%202%20*%20i%20%2B%201%29%0A%20%20%20%20root.right%20%3D%20list_to_tree_dfs%28arr,%202%20*%20i%20%2B%202%29%0A%20%20%20%20return%20root%0A%0Adef%20list_to_tree%28arr%3A%20list%5Bint%5D%29%20-%3E%20TreeNode%20%7C%20None%3A%0A%20%20%20%20%22%22%22%E5%B0%86%E5%88%97%E8%A1%A8%E5%8F%8D%E5%BA%8F%E5%88%97%E5%8C%96%E4%B8%BA%E4%BA%8C%E5%8F%89%E6%A0%91%22%22%22%0A%20%20%20%20return%20list_to_tree_dfs%28arr,%200%29%0A%0A%0Adef%20level_order%28root%3A%20TreeNode%20%7C%20None%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E5%B1%82%E5%BA%8F%E9%81%8D%E5%8E%86%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E9%98%9F%E5%88%97%EF%BC%8C%E5%8A%A0%E5%85%A5%E6%A0%B9%E8%8A%82%E7%82%B9%0A%20%20%20%20queue%3A%20deque%5BTreeNode%5D%20%3D%20deque%28%29%0A%20%20%20%20queue.append%28root%29%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%B8%80%E4%B8%AA%E5%88%97%E8%A1%A8%EF%BC%8C%E7%94%A8%E4%BA%8E%E4%BF%9D%E5%AD%98%E9%81%8D%E5%8E%86%E5%BA%8F%E5%88%97%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20while%20queue%3A%0A%20%20%20%20%20%20%20%20node%3A%20TreeNode%20%3D%20queue.popleft%28%29%20%20%23%20%E9%98%9F%E5%88%97%E5%87%BA%E9%98%9F%0A%20%20%20%20%20%20%20%20res.append%28node.val%29%20%20%23%20%E4%BF%9D%E5%AD%98%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20if%20node.left%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20queue.append%28node.left%29%20%20%23%20%E5%B7%A6%E5%AD%90%E8%8A%82%E7%82%B9%E5%85%A5%E9%98%9F%0A%20%20%20%20%20%20%20%20if%20node.right%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20queue.append%28node.right%29%20%20%23%20%E5%8F%B3%E5%AD%90%E8%8A%82%E7%82%B9%E5%85%A5%E9%98%9F%0A%20%20%20%20return%20res%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%8F%89%E6%A0%91%0A%20%20%20%20%23%20%E8%BF%99%E9%87%8C%E5%80%9F%E5%8A%A9%E4%BA%86%E4%B8%80%E4%B8%AA%E4%BB%8E%E6%95%B0%E7%BB%84%E7%9B%B4%E6%8E%A5%E7%94%9F%E6%88%90%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E5%87%BD%E6%95%B0%0A%20%20%20%20root%20%3D%20list_to_tree%28arr%3D%5B1,%202,%203,%204,%205,%206,%207%5D%29%0A%0A%20%20%20%20%23%20%E5%B1%82%E5%BA%8F%E9%81%8D%E5%8E%86%0A%20%20%20%20res%20%3D%20level_order%28root%29%0A%20%20%20%20print%28%22%5Cn%E5%B1%82%E5%BA%8F%E9%81%8D%E5%8E%86%E7%9A%84%E8%8A%82%E7%82%B9%E6%89%93%E5%8D%B0%E5%BA%8F%E5%88%97%20%3D%20%22,%20res%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=127&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=from%20collections%20import%20deque%0A%0Aclass%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%8F%89%E6%A0%91%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.left%3A%20TreeNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%B7%A6%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%20%20%20%20%20%20%20%20self.right%3A%20TreeNode%20%7C%20None%20%3D%20None%20%23%20%E5%8F%B3%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0Adef%20list_to_tree_dfs%28arr%3A%20list%5Bint%5D,%20i%3A%20int%29%20-%3E%20TreeNode%20%7C%20None%3A%0A%20%20%20%20%22%22%22%E5%B0%86%E5%88%97%E8%A1%A8%E5%8F%8D%E5%BA%8F%E5%88%97%E5%8C%96%E4%B8%BA%E4%BA%8C%E5%8F%89%E6%A0%91%EF%BC%9A%E9%80%92%E5%BD%92%22%22%22%0A%20%20%20%20%23%20%E5%A6%82%E6%9E%9C%E7%B4%A2%E5%BC%95%E8%B6%85%E5%87%BA%E6%95%B0%E7%BB%84%E9%95%BF%E5%BA%A6%EF%BC%8C%E6%88%96%E8%80%85%E5%AF%B9%E5%BA%94%E7%9A%84%E5%85%83%E7%B4%A0%E4%B8%BA%20None%20%EF%BC%8C%E5%88%99%E8%BF%94%E5%9B%9E%20None%0A%20%20%20%20if%20i%20%3C%200%20or%20i%20%3E%3D%20len%28arr%29%20or%20arr%5Bi%5D%20is%20None%3A%0A%20%20%20%20%20%20%20%20return%20None%0A%20%20%20%20%23%20%E6%9E%84%E5%BB%BA%E5%BD%93%E5%89%8D%E8%8A%82%E7%82%B9%0A%20%20%20%20root%20%3D%20TreeNode%28arr%5Bi%5D%29%0A%20%20%20%20%23%20%E9%80%92%E5%BD%92%E6%9E%84%E5%BB%BA%E5%B7%A6%E5%8F%B3%E5%AD%90%E6%A0%91%0A%20%20%20%20root.left%20%3D%20list_to_tree_dfs%28arr,%202%20*%20i%20%2B%201%29%0A%20%20%20%20root.right%20%3D%20list_to_tree_dfs%28arr,%202%20*%20i%20%2B%202%29%0A%20%20%20%20return%20root%0A%0Adef%20list_to_tree%28arr%3A%20list%5Bint%5D%29%20-%3E%20TreeNode%20%7C%20None%3A%0A%20%20%20%20%22%22%22%E5%B0%86%E5%88%97%E8%A1%A8%E5%8F%8D%E5%BA%8F%E5%88%97%E5%8C%96%E4%B8%BA%E4%BA%8C%E5%8F%89%E6%A0%91%22%22%22%0A%20%20%20%20return%20list_to_tree_dfs%28arr,%200%29%0A%0A%0Adef%20level_order%28root%3A%20TreeNode%20%7C%20None%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E5%B1%82%E5%BA%8F%E9%81%8D%E5%8E%86%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E9%98%9F%E5%88%97%EF%BC%8C%E5%8A%A0%E5%85%A5%E6%A0%B9%E8%8A%82%E7%82%B9%0A%20%20%20%20queue%3A%20deque%5BTreeNode%5D%20%3D%20deque%28%29%0A%20%20%20%20queue.append%28root%29%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%B8%80%E4%B8%AA%E5%88%97%E8%A1%A8%EF%BC%8C%E7%94%A8%E4%BA%8E%E4%BF%9D%E5%AD%98%E9%81%8D%E5%8E%86%E5%BA%8F%E5%88%97%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20while%20queue%3A%0A%20%20%20%20%20%20%20%20node%3A%20TreeNode%20%3D%20queue.popleft%28%29%20%20%23%20%E9%98%9F%E5%88%97%E5%87%BA%E9%98%9F%0A%20%20%20%20%20%20%20%20res.append%28node.val%29%20%20%23%20%E4%BF%9D%E5%AD%98%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20if%20node.left%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20queue.append%28node.left%29%20%20%23%20%E5%B7%A6%E5%AD%90%E8%8A%82%E7%82%B9%E5%85%A5%E9%98%9F%0A%20%20%20%20%20%20%20%20if%20node.right%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20queue.append%28node.right%29%20%20%23%20%E5%8F%B3%E5%AD%90%E8%8A%82%E7%82%B9%E5%85%A5%E9%98%9F%0A%20%20%20%20return%20res%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%8F%89%E6%A0%91%0A%20%20%20%20%23%20%E8%BF%99%E9%87%8C%E5%80%9F%E5%8A%A9%E4%BA%86%E4%B8%80%E4%B8%AA%E4%BB%8E%E6%95%B0%E7%BB%84%E7%9B%B4%E6%8E%A5%E7%94%9F%E6%88%90%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E5%87%BD%E6%95%B0%0A%20%20%20%20root%20%3D%20list_to_tree%28arr%3D%5B1,%202,%203,%204,%205,%206,%207%5D%29%0A%0A%20%20%20%20%23%20%E5%B1%82%E5%BA%8F%E9%81%8D%E5%8E%86%0A%20%20%20%20res%20%3D%20level_order%28root%29%0A%20%20%20%20print%28%22%5Cn%E5%B1%82%E5%BA%8F%E9%81%8D%E5%8E%86%E7%9A%84%E8%8A%82%E7%82%B9%E6%89%93%E5%8D%B0%E5%BA%8F%E5%88%97%20%3D%20%22,%20res%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=127&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div>
|
|
|
|
### 2. Complexity analysis
|
|
|
|
- **Time complexity is $O(n)$**: All nodes are visited once, using $O(n)$ time, where $n$ is the number of nodes.
|
|
- **Space complexity is $O(n)$**: In the worst case, i.e., a full binary tree, before traversing to the lowest level, the queue can contain at most $(n + 1) / 2$ nodes at the same time, occupying $O(n)$ space.
|
|
|
|
## 7.2.2 Preorder, inorder, and postorder traversal
|
|
|
|
Correspondingly, preorder, inorder, and postorder traversal all belong to "depth-first traversal", also known as "depth-first search (DFS)", which embodies a "proceed to the end first, then backtrack and continue" traversal method.
|
|
|
|
The Figure 7-10 shows the working principle of performing a depth-first traversal on a binary tree. **Depth-first traversal is like walking around the perimeter of the entire binary tree**, encountering three positions at each node, corresponding to preorder traversal, inorder traversal, and postorder traversal.
|
|
|
|
![Preorder, inorder, and postorder traversal of a binary search tree](binary_tree_traversal.assets/binary_tree_dfs.png){ class="animation-figure" }
|
|
|
|
<p align="center"> Figure 7-10 Preorder, inorder, and postorder traversal of a binary search tree </p>
|
|
|
|
### 1. Code implementation
|
|
|
|
Depth-first search is usually implemented based on recursion:
|
|
|
|
=== "Python"
|
|
|
|
```python title="binary_tree_dfs.py"
|
|
def pre_order(root: TreeNode | None):
|
|
"""前序遍历"""
|
|
if root is None:
|
|
return
|
|
# 访问优先级:根节点 -> 左子树 -> 右子树
|
|
res.append(root.val)
|
|
pre_order(root=root.left)
|
|
pre_order(root=root.right)
|
|
|
|
def in_order(root: TreeNode | None):
|
|
"""中序遍历"""
|
|
if root is None:
|
|
return
|
|
# 访问优先级:左子树 -> 根节点 -> 右子树
|
|
in_order(root=root.left)
|
|
res.append(root.val)
|
|
in_order(root=root.right)
|
|
|
|
def post_order(root: TreeNode | None):
|
|
"""后序遍历"""
|
|
if root is None:
|
|
return
|
|
# 访问优先级:左子树 -> 右子树 -> 根节点
|
|
post_order(root=root.left)
|
|
post_order(root=root.right)
|
|
res.append(root.val)
|
|
```
|
|
|
|
=== "C++"
|
|
|
|
```cpp title="binary_tree_dfs.cpp"
|
|
/* 前序遍历 */
|
|
void preOrder(TreeNode *root) {
|
|
if (root == nullptr)
|
|
return;
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
vec.push_back(root->val);
|
|
preOrder(root->left);
|
|
preOrder(root->right);
|
|
}
|
|
|
|
/* 中序遍历 */
|
|
void inOrder(TreeNode *root) {
|
|
if (root == nullptr)
|
|
return;
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
inOrder(root->left);
|
|
vec.push_back(root->val);
|
|
inOrder(root->right);
|
|
}
|
|
|
|
/* 后序遍历 */
|
|
void postOrder(TreeNode *root) {
|
|
if (root == nullptr)
|
|
return;
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
postOrder(root->left);
|
|
postOrder(root->right);
|
|
vec.push_back(root->val);
|
|
}
|
|
```
|
|
|
|
=== "Java"
|
|
|
|
```java title="binary_tree_dfs.java"
|
|
/* 前序遍历 */
|
|
void preOrder(TreeNode root) {
|
|
if (root == null)
|
|
return;
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
list.add(root.val);
|
|
preOrder(root.left);
|
|
preOrder(root.right);
|
|
}
|
|
|
|
/* 中序遍历 */
|
|
void inOrder(TreeNode root) {
|
|
if (root == null)
|
|
return;
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
inOrder(root.left);
|
|
list.add(root.val);
|
|
inOrder(root.right);
|
|
}
|
|
|
|
/* 后序遍历 */
|
|
void postOrder(TreeNode root) {
|
|
if (root == null)
|
|
return;
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
postOrder(root.left);
|
|
postOrder(root.right);
|
|
list.add(root.val);
|
|
}
|
|
```
|
|
|
|
=== "C#"
|
|
|
|
```csharp title="binary_tree_dfs.cs"
|
|
/* 前序遍历 */
|
|
void PreOrder(TreeNode? root) {
|
|
if (root == null) return;
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
list.Add(root.val!.Value);
|
|
PreOrder(root.left);
|
|
PreOrder(root.right);
|
|
}
|
|
|
|
/* 中序遍历 */
|
|
void InOrder(TreeNode? root) {
|
|
if (root == null) return;
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
InOrder(root.left);
|
|
list.Add(root.val!.Value);
|
|
InOrder(root.right);
|
|
}
|
|
|
|
/* 后序遍历 */
|
|
void PostOrder(TreeNode? root) {
|
|
if (root == null) return;
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
PostOrder(root.left);
|
|
PostOrder(root.right);
|
|
list.Add(root.val!.Value);
|
|
}
|
|
```
|
|
|
|
=== "Go"
|
|
|
|
```go title="binary_tree_dfs.go"
|
|
/* 前序遍历 */
|
|
func preOrder(node *TreeNode) {
|
|
if node == nil {
|
|
return
|
|
}
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
nums = append(nums, node.Val)
|
|
preOrder(node.Left)
|
|
preOrder(node.Right)
|
|
}
|
|
|
|
/* 中序遍历 */
|
|
func inOrder(node *TreeNode) {
|
|
if node == nil {
|
|
return
|
|
}
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
inOrder(node.Left)
|
|
nums = append(nums, node.Val)
|
|
inOrder(node.Right)
|
|
}
|
|
|
|
/* 后序遍历 */
|
|
func postOrder(node *TreeNode) {
|
|
if node == nil {
|
|
return
|
|
}
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
postOrder(node.Left)
|
|
postOrder(node.Right)
|
|
nums = append(nums, node.Val)
|
|
}
|
|
```
|
|
|
|
=== "Swift"
|
|
|
|
```swift title="binary_tree_dfs.swift"
|
|
/* 前序遍历 */
|
|
func preOrder(root: TreeNode?) {
|
|
guard let root = root else {
|
|
return
|
|
}
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
list.append(root.val)
|
|
preOrder(root: root.left)
|
|
preOrder(root: root.right)
|
|
}
|
|
|
|
/* 中序遍历 */
|
|
func inOrder(root: TreeNode?) {
|
|
guard let root = root else {
|
|
return
|
|
}
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
inOrder(root: root.left)
|
|
list.append(root.val)
|
|
inOrder(root: root.right)
|
|
}
|
|
|
|
/* 后序遍历 */
|
|
func postOrder(root: TreeNode?) {
|
|
guard let root = root else {
|
|
return
|
|
}
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
postOrder(root: root.left)
|
|
postOrder(root: root.right)
|
|
list.append(root.val)
|
|
}
|
|
```
|
|
|
|
=== "JS"
|
|
|
|
```javascript title="binary_tree_dfs.js"
|
|
/* 前序遍历 */
|
|
function preOrder(root) {
|
|
if (root === null) return;
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
list.push(root.val);
|
|
preOrder(root.left);
|
|
preOrder(root.right);
|
|
}
|
|
|
|
/* 中序遍历 */
|
|
function inOrder(root) {
|
|
if (root === null) return;
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
inOrder(root.left);
|
|
list.push(root.val);
|
|
inOrder(root.right);
|
|
}
|
|
|
|
/* 后序遍历 */
|
|
function postOrder(root) {
|
|
if (root === null) return;
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
postOrder(root.left);
|
|
postOrder(root.right);
|
|
list.push(root.val);
|
|
}
|
|
```
|
|
|
|
=== "TS"
|
|
|
|
```typescript title="binary_tree_dfs.ts"
|
|
/* 前序遍历 */
|
|
function preOrder(root: TreeNode | null): void {
|
|
if (root === null) {
|
|
return;
|
|
}
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
list.push(root.val);
|
|
preOrder(root.left);
|
|
preOrder(root.right);
|
|
}
|
|
|
|
/* 中序遍历 */
|
|
function inOrder(root: TreeNode | null): void {
|
|
if (root === null) {
|
|
return;
|
|
}
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
inOrder(root.left);
|
|
list.push(root.val);
|
|
inOrder(root.right);
|
|
}
|
|
|
|
/* 后序遍历 */
|
|
function postOrder(root: TreeNode | null): void {
|
|
if (root === null) {
|
|
return;
|
|
}
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
postOrder(root.left);
|
|
postOrder(root.right);
|
|
list.push(root.val);
|
|
}
|
|
```
|
|
|
|
=== "Dart"
|
|
|
|
```dart title="binary_tree_dfs.dart"
|
|
/* 前序遍历 */
|
|
void preOrder(TreeNode? node) {
|
|
if (node == null) return;
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
list.add(node.val);
|
|
preOrder(node.left);
|
|
preOrder(node.right);
|
|
}
|
|
|
|
/* 中序遍历 */
|
|
void inOrder(TreeNode? node) {
|
|
if (node == null) return;
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
inOrder(node.left);
|
|
list.add(node.val);
|
|
inOrder(node.right);
|
|
}
|
|
|
|
/* 后序遍历 */
|
|
void postOrder(TreeNode? node) {
|
|
if (node == null) return;
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
postOrder(node.left);
|
|
postOrder(node.right);
|
|
list.add(node.val);
|
|
}
|
|
```
|
|
|
|
=== "Rust"
|
|
|
|
```rust title="binary_tree_dfs.rs"
|
|
/* 前序遍历 */
|
|
fn pre_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {
|
|
let mut result = vec![];
|
|
|
|
if let Some(node) = root {
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
result.push(node.borrow().val);
|
|
result.append(&mut pre_order(node.borrow().left.as_ref()));
|
|
result.append(&mut pre_order(node.borrow().right.as_ref()));
|
|
}
|
|
result
|
|
}
|
|
|
|
/* 中序遍历 */
|
|
fn in_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {
|
|
let mut result = vec![];
|
|
|
|
if let Some(node) = root {
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
result.append(&mut in_order(node.borrow().left.as_ref()));
|
|
result.push(node.borrow().val);
|
|
result.append(&mut in_order(node.borrow().right.as_ref()));
|
|
}
|
|
result
|
|
}
|
|
|
|
/* 后序遍历 */
|
|
fn post_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {
|
|
let mut result = vec![];
|
|
|
|
if let Some(node) = root {
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
result.append(&mut post_order(node.borrow().left.as_ref()));
|
|
result.append(&mut post_order(node.borrow().right.as_ref()));
|
|
result.push(node.borrow().val);
|
|
}
|
|
result
|
|
}
|
|
```
|
|
|
|
=== "C"
|
|
|
|
```c title="binary_tree_dfs.c"
|
|
/* 前序遍历 */
|
|
void preOrder(TreeNode *root, int *size) {
|
|
if (root == NULL)
|
|
return;
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
arr[(*size)++] = root->val;
|
|
preOrder(root->left, size);
|
|
preOrder(root->right, size);
|
|
}
|
|
|
|
/* 中序遍历 */
|
|
void inOrder(TreeNode *root, int *size) {
|
|
if (root == NULL)
|
|
return;
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
inOrder(root->left, size);
|
|
arr[(*size)++] = root->val;
|
|
inOrder(root->right, size);
|
|
}
|
|
|
|
/* 后序遍历 */
|
|
void postOrder(TreeNode *root, int *size) {
|
|
if (root == NULL)
|
|
return;
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
postOrder(root->left, size);
|
|
postOrder(root->right, size);
|
|
arr[(*size)++] = root->val;
|
|
}
|
|
```
|
|
|
|
=== "Kotlin"
|
|
|
|
```kotlin title="binary_tree_dfs.kt"
|
|
/* 前序遍历 */
|
|
fun preOrder(root: TreeNode?) {
|
|
if (root == null) return
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
list.add(root.value)
|
|
preOrder(root.left)
|
|
preOrder(root.right)
|
|
}
|
|
|
|
/* 中序遍历 */
|
|
fun inOrder(root: TreeNode?) {
|
|
if (root == null) return
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
inOrder(root.left)
|
|
list.add(root.value)
|
|
inOrder(root.right)
|
|
}
|
|
|
|
/* 后序遍历 */
|
|
fun postOrder(root: TreeNode?) {
|
|
if (root == null) return
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
postOrder(root.left)
|
|
postOrder(root.right)
|
|
list.add(root.value)
|
|
}
|
|
```
|
|
|
|
=== "Ruby"
|
|
|
|
```ruby title="binary_tree_dfs.rb"
|
|
[class]{}-[func]{pre_order}
|
|
|
|
[class]{}-[func]{in_order}
|
|
|
|
[class]{}-[func]{post_order}
|
|
```
|
|
|
|
=== "Zig"
|
|
|
|
```zig title="binary_tree_dfs.zig"
|
|
// 前序遍历
|
|
fn preOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {
|
|
if (root == null) return;
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
try list.append(root.?.val);
|
|
try preOrder(T, root.?.left);
|
|
try preOrder(T, root.?.right);
|
|
}
|
|
|
|
// 中序遍历
|
|
fn inOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {
|
|
if (root == null) return;
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
try inOrder(T, root.?.left);
|
|
try list.append(root.?.val);
|
|
try inOrder(T, root.?.right);
|
|
}
|
|
|
|
// 后序遍历
|
|
fn postOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {
|
|
if (root == null) return;
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
try postOrder(T, root.?.left);
|
|
try postOrder(T, root.?.right);
|
|
try list.append(root.?.val);
|
|
}
|
|
```
|
|
|
|
??? pythontutor "Code Visualization"
|
|
|
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%8F%89%E6%A0%91%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.left%3A%20TreeNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%B7%A6%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%20%20%20%20%20%20%20%20self.right%3A%20TreeNode%20%7C%20None%20%3D%20None%20%23%20%E5%8F%B3%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0Adef%20list_to_tree_dfs%28arr%3A%20list%5Bint%5D,%20i%3A%20int%29%20-%3E%20TreeNode%20%7C%20None%3A%0A%20%20%20%20%22%22%22%E5%B0%86%E5%88%97%E8%A1%A8%E5%8F%8D%E5%BA%8F%E5%88%97%E5%8C%96%E4%B8%BA%E4%BA%8C%E5%8F%89%E6%A0%91%EF%BC%9A%E9%80%92%E5%BD%92%22%22%22%0A%20%20%20%20%23%20%E5%A6%82%E6%9E%9C%E7%B4%A2%E5%BC%95%E8%B6%85%E5%87%BA%E6%95%B0%E7%BB%84%E9%95%BF%E5%BA%A6%EF%BC%8C%E6%88%96%E8%80%85%E5%AF%B9%E5%BA%94%E7%9A%84%E5%85%83%E7%B4%A0%E4%B8%BA%20None%20%EF%BC%8C%E5%88%99%E8%BF%94%E5%9B%9E%20None%0A%20%20%20%20if%20i%20%3C%200%20or%20i%20%3E%3D%20len%28arr%29%20or%20arr%5Bi%5D%20is%20None%3A%0A%20%20%20%20%20%20%20%20return%20None%0A%20%20%20%20%23%20%E6%9E%84%E5%BB%BA%E5%BD%93%E5%89%8D%E8%8A%82%E7%82%B9%0A%20%20%20%20root%20%3D%20TreeNode%28arr%5Bi%5D%29%0A%20%20%20%20%23%20%E9%80%92%E5%BD%92%E6%9E%84%E5%BB%BA%E5%B7%A6%E5%8F%B3%E5%AD%90%E6%A0%91%0A%20%20%20%20root.left%20%3D%20list_to_tree_dfs%28arr,%202%20*%20i%20%2B%201%29%0A%20%20%20%20root.right%20%3D%20list_to_tree_dfs%28arr,%202%20*%20i%20%2B%202%29%0A%20%20%20%20return%20root%0A%0Adef%20list_to_tree%28arr%3A%20list%5Bint%5D%29%20-%3E%20TreeNode%20%7C%20None%3A%0A%20%20%20%20%22%22%22%E5%B0%86%E5%88%97%E8%A1%A8%E5%8F%8D%E5%BA%8F%E5%88%97%E5%8C%96%E4%B8%BA%E4%BA%8C%E5%8F%89%E6%A0%91%22%22%22%0A%20%20%20%20return%20list_to_tree_dfs%28arr,%200%29%0A%0A%0Adef%20pre_order%28root%3A%20TreeNode%20%7C%20None%29%3A%0A%20%20%20%20%22%22%22%E5%89%8D%E5%BA%8F%E9%81%8D%E5%8E%86%22%22%22%0A%20%20%20%20if%20root%20is%20None%3A%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%AE%BF%E9%97%AE%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%9A%E6%A0%B9%E8%8A%82%E7%82%B9%20-%3E%20%E5%B7%A6%E5%AD%90%E6%A0%91%20-%3E%20%E5%8F%B3%E5%AD%90%E6%A0%91%0A%20%20%20%20res.append%28root.val%29%0A%20%20%20%20pre_order%28root%3Droot.left%29%0A%20%20%20%20pre_order%28root%3Droot.right%29%0A%0Adef%20in_order%28root%3A%20TreeNode%20%7C%20None%29%3A%0A%20%20%20%20%22%22%22%E4%B8%AD%E5%BA%8F%E9%81%8D%E5%8E%86%22%22%22%0A%20%20%20%20if%20root%20is%20None%3A%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%AE%BF%E9%97%AE%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%9A%E5%B7%A6%E5%AD%90%E6%A0%91%20-%3E%20%E6%A0%B9%E8%8A%82%E7%82%B9%20-%3E%20%E5%8F%B3%E5%AD%90%E6%A0%91%0A%20%20%20%20in_order%28root%3Droot.left%29%0A%20%20%20%20res.append%28root.val%29%0A%20%20%20%20in_order%28root%3Droot.right%29%0A%0Adef%20post_order%28root%3A%20TreeNode%20%7C%20None%29%3A%0A%20%20%20%20%22%22%22%E5%90%8E%E5%BA%8F%E9%81%8D%E5%8E%86%22%22%22%0A%20%20%20%20if%20root%20is%20None%3A%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%AE%BF%E9%97%AE%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%9A%E5%B7%A6%E5%AD%90%E6%A0%91%20-%3E%20%E5%8F%B3%E5%AD%90%E6%A0%91%20-%3E%20%E6%A0%B9%E8%8A%82%E7%82%B9%0A%20%20%20%20post_order%28root%3Droot.left%29%0A%20%20%20%20post_order%28root%3Droot.right%29%0A%20%20%20%20res.append%28root.val%29%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%8F%89%E6%A0%91%0A%20%20%20%20%23%20%E8%BF%99%E9%87%8C%E5%80%9F%E5%8A%A9%E4%BA%86%E4%B8%80%E4%B8%AA%E4%BB%8E%E6%95%B0%E7%BB%84%E7%9B%B4%E6%8E%A5%E7%94%9F%E6%88%90%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E5%87%BD%E6%95%B0%0A%20%20%20%20root%20%3D%20list_to_tree%28arr%3D%5B1,%202,%203,%204,%205,%206,%207%5D%29%0A%0A%20%20%20%20%23%20%E5%89%8D%E5%BA%8F%E9%81%8D%E5%8E%86%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20pre_order%28root%29%0A%20%20%20%20print%28%22%5Cn%E5%89%8D%E5%BA%8F%E9%81%8D%E5%8E%86%E7%9A%84%E8%8A%82%E7%82%B9%E6%89%93%E5%8D%B0%E5%BA%8F%E5%88%97%20%3D%20%22,%20res%29%0A%0A%20%20%20%20%23%20%E4%B8%AD%E5%BA%8F%E9%81%8D%E5%8E%86%0A%20%20%20%20res.clear%28%29%0A%20%20%20%20in_order%28root%29%0A%20%20%20%20print%28%22%5Cn%E4%B8%AD%E5%BA%8F%E9%81%8D%E5%8E%86%E7%9A%84%E8%8A%82%E7%82%B9%E6%89%93%E5%8D%B0%E5%BA%8F%E5%88%97%20%3D%20%22,%20res%29%0A%0A%20%20%20%20%23%20%E5%90%8E%E5%BA%8F%E9%81%8D%E5%8E%86%0A%20%20%20%20res.clear%28%29%0A%20%20%20%20post_order%28root%29%0A%20%20%20%20print%28%22%5Cn%E5%90%8E%E5%BA%8F%E9%81%8D%E5%8E%86%E7%9A%84%E8%8A%82%E7%82%B9%E6%89%93%E5%8D%B0%E5%BA%8F%E5%88%97%20%3D%20%22,%20res%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=129&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%8F%89%E6%A0%91%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.left%3A%20TreeNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%B7%A6%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%20%20%20%20%20%20%20%20self.right%3A%20TreeNode%20%7C%20None%20%3D%20None%20%23%20%E5%8F%B3%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0Adef%20list_to_tree_dfs%28arr%3A%20list%5Bint%5D,%20i%3A%20int%29%20-%3E%20TreeNode%20%7C%20None%3A%0A%20%20%20%20%22%22%22%E5%B0%86%E5%88%97%E8%A1%A8%E5%8F%8D%E5%BA%8F%E5%88%97%E5%8C%96%E4%B8%BA%E4%BA%8C%E5%8F%89%E6%A0%91%EF%BC%9A%E9%80%92%E5%BD%92%22%22%22%0A%20%20%20%20%23%20%E5%A6%82%E6%9E%9C%E7%B4%A2%E5%BC%95%E8%B6%85%E5%87%BA%E6%95%B0%E7%BB%84%E9%95%BF%E5%BA%A6%EF%BC%8C%E6%88%96%E8%80%85%E5%AF%B9%E5%BA%94%E7%9A%84%E5%85%83%E7%B4%A0%E4%B8%BA%20None%20%EF%BC%8C%E5%88%99%E8%BF%94%E5%9B%9E%20None%0A%20%20%20%20if%20i%20%3C%200%20or%20i%20%3E%3D%20len%28arr%29%20or%20arr%5Bi%5D%20is%20None%3A%0A%20%20%20%20%20%20%20%20return%20None%0A%20%20%20%20%23%20%E6%9E%84%E5%BB%BA%E5%BD%93%E5%89%8D%E8%8A%82%E7%82%B9%0A%20%20%20%20root%20%3D%20TreeNode%28arr%5Bi%5D%29%0A%20%20%20%20%23%20%E9%80%92%E5%BD%92%E6%9E%84%E5%BB%BA%E5%B7%A6%E5%8F%B3%E5%AD%90%E6%A0%91%0A%20%20%20%20root.left%20%3D%20list_to_tree_dfs%28arr,%202%20*%20i%20%2B%201%29%0A%20%20%20%20root.right%20%3D%20list_to_tree_dfs%28arr,%202%20*%20i%20%2B%202%29%0A%20%20%20%20return%20root%0A%0Adef%20list_to_tree%28arr%3A%20list%5Bint%5D%29%20-%3E%20TreeNode%20%7C%20None%3A%0A%20%20%20%20%22%22%22%E5%B0%86%E5%88%97%E8%A1%A8%E5%8F%8D%E5%BA%8F%E5%88%97%E5%8C%96%E4%B8%BA%E4%BA%8C%E5%8F%89%E6%A0%91%22%22%22%0A%20%20%20%20return%20list_to_tree_dfs%28arr,%200%29%0A%0A%0Adef%20pre_order%28root%3A%20TreeNode%20%7C%20None%29%3A%0A%20%20%20%20%22%22%22%E5%89%8D%E5%BA%8F%E9%81%8D%E5%8E%86%22%22%22%0A%20%20%20%20if%20root%20is%20None%3A%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%AE%BF%E9%97%AE%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%9A%E6%A0%B9%E8%8A%82%E7%82%B9%20-%3E%20%E5%B7%A6%E5%AD%90%E6%A0%91%20-%3E%20%E5%8F%B3%E5%AD%90%E6%A0%91%0A%20%20%20%20res.append%28root.val%29%0A%20%20%20%20pre_order%28root%3Droot.left%29%0A%20%20%20%20pre_order%28root%3Droot.right%29%0A%0Adef%20in_order%28root%3A%20TreeNode%20%7C%20None%29%3A%0A%20%20%20%20%22%22%22%E4%B8%AD%E5%BA%8F%E9%81%8D%E5%8E%86%22%22%22%0A%20%20%20%20if%20root%20is%20None%3A%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%AE%BF%E9%97%AE%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%9A%E5%B7%A6%E5%AD%90%E6%A0%91%20-%3E%20%E6%A0%B9%E8%8A%82%E7%82%B9%20-%3E%20%E5%8F%B3%E5%AD%90%E6%A0%91%0A%20%20%20%20in_order%28root%3Droot.left%29%0A%20%20%20%20res.append%28root.val%29%0A%20%20%20%20in_order%28root%3Droot.right%29%0A%0Adef%20post_order%28root%3A%20TreeNode%20%7C%20None%29%3A%0A%20%20%20%20%22%22%22%E5%90%8E%E5%BA%8F%E9%81%8D%E5%8E%86%22%22%22%0A%20%20%20%20if%20root%20is%20None%3A%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%AE%BF%E9%97%AE%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%9A%E5%B7%A6%E5%AD%90%E6%A0%91%20-%3E%20%E5%8F%B3%E5%AD%90%E6%A0%91%20-%3E%20%E6%A0%B9%E8%8A%82%E7%82%B9%0A%20%20%20%20post_order%28root%3Droot.left%29%0A%20%20%20%20post_order%28root%3Droot.right%29%0A%20%20%20%20res.append%28root.val%29%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%8F%89%E6%A0%91%0A%20%20%20%20%23%20%E8%BF%99%E9%87%8C%E5%80%9F%E5%8A%A9%E4%BA%86%E4%B8%80%E4%B8%AA%E4%BB%8E%E6%95%B0%E7%BB%84%E7%9B%B4%E6%8E%A5%E7%94%9F%E6%88%90%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E5%87%BD%E6%95%B0%0A%20%20%20%20root%20%3D%20list_to_tree%28arr%3D%5B1,%202,%203,%204,%205,%206,%207%5D%29%0A%0A%20%20%20%20%23%20%E5%89%8D%E5%BA%8F%E9%81%8D%E5%8E%86%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20pre_order%28root%29%0A%20%20%20%20print%28%22%5Cn%E5%89%8D%E5%BA%8F%E9%81%8D%E5%8E%86%E7%9A%84%E8%8A%82%E7%82%B9%E6%89%93%E5%8D%B0%E5%BA%8F%E5%88%97%20%3D%20%22,%20res%29%0A%0A%20%20%20%20%23%20%E4%B8%AD%E5%BA%8F%E9%81%8D%E5%8E%86%0A%20%20%20%20res.clear%28%29%0A%20%20%20%20in_order%28root%29%0A%20%20%20%20print%28%22%5Cn%E4%B8%AD%E5%BA%8F%E9%81%8D%E5%8E%86%E7%9A%84%E8%8A%82%E7%82%B9%E6%89%93%E5%8D%B0%E5%BA%8F%E5%88%97%20%3D%20%22,%20res%29%0A%0A%20%20%20%20%23%20%E5%90%8E%E5%BA%8F%E9%81%8D%E5%8E%86%0A%20%20%20%20res.clear%28%29%0A%20%20%20%20post_order%28root%29%0A%20%20%20%20print%28%22%5Cn%E5%90%8E%E5%BA%8F%E9%81%8D%E5%8E%86%E7%9A%84%E8%8A%82%E7%82%B9%E6%89%93%E5%8D%B0%E5%BA%8F%E5%88%97%20%3D%20%22,%20res%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=129&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div>
|
|
|
|
!!! tip
|
|
|
|
Depth-first search can also be implemented based on iteration, interested readers can study this on their own.
|
|
|
|
The Figure 7-11 shows the recursive process of preorder traversal of a binary tree, which can be divided into two opposite parts: "recursion" and "return".
|
|
|
|
1. "Recursion" means starting a new method, the program accesses the next node in this process.
|
|
2. "Return" means the function returns, indicating the current node has been fully accessed.
|
|
|
|
=== "<1>"
|
|
![The recursive process of preorder traversal](binary_tree_traversal.assets/preorder_step1.png){ class="animation-figure" }
|
|
|
|
=== "<2>"
|
|
![preorder_step2](binary_tree_traversal.assets/preorder_step2.png){ class="animation-figure" }
|
|
|
|
=== "<3>"
|
|
![preorder_step3](binary_tree_traversal.assets/preorder_step3.png){ class="animation-figure" }
|
|
|
|
=== "<4>"
|
|
![preorder_step4](binary_tree_traversal.assets/preorder_step4.png){ class="animation-figure" }
|
|
|
|
=== "<5>"
|
|
![preorder_step5](binary_tree_traversal.assets/preorder_step5.png){ class="animation-figure" }
|
|
|
|
=== "<6>"
|
|
![preorder_step6](binary_tree_traversal.assets/preorder_step6.png){ class="animation-figure" }
|
|
|
|
=== "<7>"
|
|
![preorder_step7](binary_tree_traversal.assets/preorder_step7.png){ class="animation-figure" }
|
|
|
|
=== "<8>"
|
|
![preorder_step8](binary_tree_traversal.assets/preorder_step8.png){ class="animation-figure" }
|
|
|
|
=== "<9>"
|
|
![preorder_step9](binary_tree_traversal.assets/preorder_step9.png){ class="animation-figure" }
|
|
|
|
=== "<10>"
|
|
![preorder_step10](binary_tree_traversal.assets/preorder_step10.png){ class="animation-figure" }
|
|
|
|
=== "<11>"
|
|
![preorder_step11](binary_tree_traversal.assets/preorder_step11.png){ class="animation-figure" }
|
|
|
|
<p align="center"> Figure 7-11 The recursive process of preorder traversal </p>
|
|
|
|
### 2. Complexity analysis
|
|
|
|
- **Time complexity is $O(n)$**: All nodes are visited once, using $O(n)$ time.
|
|
- **Space complexity is $O(n)$**: In the worst case, i.e., the tree degrades into a linked list, the recursion depth reaches $n$, the system occupies $O(n)$ stack frame space.
|