mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 23:56:29 +08:00
c9041c5c5e
* preorder, inorder, postorder -> pre-order, in-order, post-order * Bug fixes * Bug fixes * Update what_is_dsa.md * Sync zh and zh-hant versions * Sync zh and zh-hant versions. * Update performance_evaluation.md and time_complexity.md * Add @khoaxuantu to the landing page. * Sync zh and zh-hant versions * Add @ khoaxuantu to the landing page of zh-hant and en versions. * Sync zh and zh-hant versions. * Small improvements * @issue : #1450 (#1453) Fix writing "obsecure" to "obscure" Co-authored-by: Gaya <kheliligaya@gmail.com> * Update the definition of "adaptive sorting". * Update n_queens_problem.md * Sync zh, zh-hant, and en versions. --------- Co-authored-by: Gaya-Khelili <50716339+Gaya-Khelili@users.noreply.github.com> Co-authored-by: Gaya <kheliligaya@gmail.com>
170 lines
4 KiB
Rust
170 lines
4 KiB
Rust
/*
|
|
* File: time_complexity.rs
|
|
* Created Time: 2023-01-10
|
|
* Author: xBLACICEx (xBLACKICEx@outlook.com), codingonion (coderonion@gmail.com)
|
|
*/
|
|
|
|
/* 常數階 */
|
|
fn constant(n: i32) -> i32 {
|
|
_ = n;
|
|
let mut count = 0;
|
|
let size = 100_000;
|
|
for _ in 0..size {
|
|
count += 1;
|
|
}
|
|
count
|
|
}
|
|
|
|
/* 線性階 */
|
|
fn linear(n: i32) -> i32 {
|
|
let mut count = 0;
|
|
for _ in 0..n {
|
|
count += 1;
|
|
}
|
|
count
|
|
}
|
|
|
|
/* 線性階(走訪陣列) */
|
|
fn array_traversal(nums: &[i32]) -> i32 {
|
|
let mut count = 0;
|
|
// 迴圈次數與陣列長度成正比
|
|
for _ in nums {
|
|
count += 1;
|
|
}
|
|
count
|
|
}
|
|
|
|
/* 平方階 */
|
|
fn quadratic(n: i32) -> i32 {
|
|
let mut count = 0;
|
|
// 迴圈次數與資料大小 n 成平方關係
|
|
for _ in 0..n {
|
|
for _ in 0..n {
|
|
count += 1;
|
|
}
|
|
}
|
|
count
|
|
}
|
|
|
|
/* 平方階(泡沫排序) */
|
|
fn bubble_sort(nums: &mut [i32]) -> i32 {
|
|
let mut count = 0; // 計數器
|
|
|
|
// 外迴圈:未排序區間為 [0, i]
|
|
for i in (1..nums.len()).rev() {
|
|
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
|
|
for j in 0..i {
|
|
if nums[j] > nums[j + 1] {
|
|
// 交換 nums[j] 與 nums[j + 1]
|
|
let tmp = nums[j];
|
|
nums[j] = nums[j + 1];
|
|
nums[j + 1] = tmp;
|
|
count += 3; // 元素交換包含 3 個單元操作
|
|
}
|
|
}
|
|
}
|
|
count
|
|
}
|
|
|
|
/* 指數階(迴圈實現) */
|
|
fn exponential(n: i32) -> i32 {
|
|
let mut count = 0;
|
|
let mut base = 1;
|
|
// 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
|
|
for _ in 0..n {
|
|
for _ in 0..base {
|
|
count += 1
|
|
}
|
|
base *= 2;
|
|
}
|
|
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
|
count
|
|
}
|
|
|
|
/* 指數階(遞迴實現) */
|
|
fn exp_recur(n: i32) -> i32 {
|
|
if n == 1 {
|
|
return 1;
|
|
}
|
|
exp_recur(n - 1) + exp_recur(n - 1) + 1
|
|
}
|
|
|
|
/* 對數階(迴圈實現) */
|
|
fn logarithmic(mut n: i32) -> i32 {
|
|
let mut count = 0;
|
|
while n > 1 {
|
|
n = n / 2;
|
|
count += 1;
|
|
}
|
|
count
|
|
}
|
|
|
|
/* 對數階(遞迴實現) */
|
|
fn log_recur(n: i32) -> i32 {
|
|
if n <= 1 {
|
|
return 0;
|
|
}
|
|
log_recur(n / 2) + 1
|
|
}
|
|
|
|
/* 線性對數階 */
|
|
fn linear_log_recur(n: i32) -> i32 {
|
|
if n <= 1 {
|
|
return 1;
|
|
}
|
|
let mut count = linear_log_recur(n / 2) + linear_log_recur(n / 2);
|
|
for _ in 0..n {
|
|
count += 1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/* 階乘階(遞迴實現) */
|
|
fn factorial_recur(n: i32) -> i32 {
|
|
if n == 0 {
|
|
return 1;
|
|
}
|
|
let mut count = 0;
|
|
// 從 1 個分裂出 n 個
|
|
for _ in 0..n {
|
|
count += factorial_recur(n - 1);
|
|
}
|
|
count
|
|
}
|
|
|
|
/* Driver Code */
|
|
fn main() {
|
|
// 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢
|
|
let n: i32 = 8;
|
|
println!("輸入資料大小 n = {}", n);
|
|
|
|
let mut count = constant(n);
|
|
println!("常數階的操作數量 = {}", count);
|
|
|
|
count = linear(n);
|
|
println!("線性階的操作數量 = {}", count);
|
|
count = array_traversal(&vec![0; n as usize]);
|
|
println!("線性階(走訪陣列)的操作數量 = {}", count);
|
|
|
|
count = quadratic(n);
|
|
println!("平方階的操作數量 = {}", count);
|
|
let mut nums = (1..=n).rev().collect::<Vec<_>>(); // [n,n-1,...,2,1]
|
|
count = bubble_sort(&mut nums);
|
|
println!("平方階(泡沫排序)的操作數量 = {}", count);
|
|
|
|
count = exponential(n);
|
|
println!("指數階(迴圈實現)的操作數量 = {}", count);
|
|
count = exp_recur(n);
|
|
println!("指數階(遞迴實現)的操作數量 = {}", count);
|
|
|
|
count = logarithmic(n);
|
|
println!("對數階(迴圈實現)的操作數量 = {}", count);
|
|
count = log_recur(n);
|
|
println!("對數階(遞迴實現)的操作數量 = {}", count);
|
|
|
|
count = linear_log_recur(n);
|
|
println!("線性對數階(遞迴實現)的操作數量 = {}", count);
|
|
|
|
count = factorial_recur(n);
|
|
println!("階乘階(遞迴實現)的操作數量 = {}", count);
|
|
}
|