/* * File: time_complexity.rs * Created Time: 2023-01-10 * Author: xBLACICEx (xBLACKICEx@outlook.com), codingonion (coderonion@gmail.com) */ /* 常數階 */ fn constant(n: i32) -> i32 { _ = n; let mut count = 0; let size = 100_000; for _ in 0..size { count += 1; } count } /* 線性階 */ fn linear(n: i32) -> i32 { let mut count = 0; for _ in 0..n { count += 1; } count } /* 線性階(走訪陣列) */ fn array_traversal(nums: &[i32]) -> i32 { let mut count = 0; // 迴圈次數與陣列長度成正比 for _ in nums { count += 1; } count } /* 平方階 */ fn quadratic(n: i32) -> i32 { let mut count = 0; // 迴圈次數與資料大小 n 成平方關係 for _ in 0..n { for _ in 0..n { count += 1; } } count } /* 平方階(泡沫排序) */ fn bubble_sort(nums: &mut [i32]) -> i32 { let mut count = 0; // 計數器 // 外迴圈:未排序區間為 [0, i] for i in (1..nums.len()).rev() { // 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端 for j in 0..i { if nums[j] > nums[j + 1] { // 交換 nums[j] 與 nums[j + 1] let tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // 元素交換包含 3 個單元操作 } } } count } /* 指數階(迴圈實現) */ fn exponential(n: i32) -> i32 { let mut count = 0; let mut base = 1; // 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1) for _ in 0..n { for _ in 0..base { count += 1 } base *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 count } /* 指數階(遞迴實現) */ fn exp_recur(n: i32) -> i32 { if n == 1 { return 1; } exp_recur(n - 1) + exp_recur(n - 1) + 1 } /* 對數階(迴圈實現) */ fn logarithmic(mut n: i32) -> i32 { let mut count = 0; while n > 1 { n = n / 2; count += 1; } count } /* 對數階(遞迴實現) */ fn log_recur(n: i32) -> i32 { if n <= 1 { return 0; } log_recur(n / 2) + 1 } /* 線性對數階 */ fn linear_log_recur(n: i32) -> i32 { if n <= 1 { return 1; } let mut count = linear_log_recur(n / 2) + linear_log_recur(n / 2); for _ in 0..n { count += 1; } return count; } /* 階乘階(遞迴實現) */ fn factorial_recur(n: i32) -> i32 { if n == 0 { return 1; } let mut count = 0; // 從 1 個分裂出 n 個 for _ in 0..n { count += factorial_recur(n - 1); } count } /* Driver Code */ fn main() { // 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢 let n: i32 = 8; println!("輸入資料大小 n = {}", n); let mut count = constant(n); println!("常數階的操作數量 = {}", count); count = linear(n); println!("線性階的操作數量 = {}", count); count = array_traversal(&vec![0; n as usize]); println!("線性階(走訪陣列)的操作數量 = {}", count); count = quadratic(n); println!("平方階的操作數量 = {}", count); let mut nums = (1..=n).rev().collect::>(); // [n,n-1,...,2,1] count = bubble_sort(&mut nums); println!("平方階(泡沫排序)的操作數量 = {}", count); count = exponential(n); println!("指數階(迴圈實現)的操作數量 = {}", count); count = exp_recur(n); println!("指數階(遞迴實現)的操作數量 = {}", count); count = logarithmic(n); println!("對數階(迴圈實現)的操作數量 = {}", count); count = log_recur(n); println!("對數階(遞迴實現)的操作數量 = {}", count); count = linear_log_recur(n); println!("線性對數階(遞迴實現)的操作數量 = {}", count); count = factorial_recur(n); println!("階乘階(遞迴實現)的操作數量 = {}", count); }