mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-28 05:06:28 +08:00
1122 lines
35 KiB
Markdown
Executable file
1122 lines
35 KiB
Markdown
Executable file
---
|
||
comments: true
|
||
---
|
||
|
||
# 7.3. 二叉搜索树
|
||
|
||
「二叉搜索树 Binary Search Tree」满足以下条件:
|
||
|
||
1. 对于根节点,左子树中所有节点的值 $<$ 根节点的值 $<$ 右子树中所有节点的值;
|
||
2. 任意节点的左、右子树也是二叉搜索树,即同样满足条件 `1.` ;
|
||
|
||
![二叉搜索树](binary_search_tree.assets/binary_search_tree.png)
|
||
|
||
<p align="center"> Fig. 二叉搜索树 </p>
|
||
|
||
## 7.3.1. 二叉搜索树的操作
|
||
|
||
### 查找节点
|
||
|
||
给定目标节点值 `num` ,可以根据二叉搜索树的性质来查找。我们声明一个节点 `cur` ,从二叉树的根节点 `root` 出发,循环比较节点值 `cur.val` 和 `num` 之间的大小关系
|
||
|
||
- 若 `cur.val < num` ,说明目标节点在 `cur` 的右子树中,因此执行 `cur = cur.right` ;
|
||
- 若 `cur.val > num` ,说明目标节点在 `cur` 的左子树中,因此执行 `cur = cur.left` ;
|
||
- 若 `cur.val = num` ,说明找到目标节点,跳出循环并返回该节点;
|
||
|
||
=== "<1>"
|
||
![bst_search_step1](binary_search_tree.assets/bst_search_step1.png)
|
||
|
||
=== "<2>"
|
||
![bst_search_step2](binary_search_tree.assets/bst_search_step2.png)
|
||
|
||
=== "<3>"
|
||
![bst_search_step3](binary_search_tree.assets/bst_search_step3.png)
|
||
|
||
=== "<4>"
|
||
![bst_search_step4](binary_search_tree.assets/bst_search_step4.png)
|
||
|
||
二叉搜索树的查找操作与二分查找算法的工作原理一致,都是每轮排除一半情况。循环次数最多为二叉树的高度,当二叉树平衡时,使用 $O(\log n)$ 时间。
|
||
|
||
=== "Java"
|
||
|
||
```java title="binary_search_tree.java"
|
||
/* 查找节点 */
|
||
TreeNode search(int num) {
|
||
TreeNode cur = root;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur != null) {
|
||
// 目标节点在 cur 的右子树中
|
||
if (cur.val < num)
|
||
cur = cur.right;
|
||
// 目标节点在 cur 的左子树中
|
||
else if (cur.val > num)
|
||
cur = cur.left;
|
||
// 找到目标节点,跳出循环
|
||
else
|
||
break;
|
||
}
|
||
// 返回目标节点
|
||
return cur;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="binary_search_tree.cpp"
|
||
/* 查找节点 */
|
||
TreeNode *search(int num) {
|
||
TreeNode *cur = root;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur != nullptr) {
|
||
// 目标节点在 cur 的右子树中
|
||
if (cur->val < num)
|
||
cur = cur->right;
|
||
// 目标节点在 cur 的左子树中
|
||
else if (cur->val > num)
|
||
cur = cur->left;
|
||
// 找到目标节点,跳出循环
|
||
else
|
||
break;
|
||
}
|
||
// 返回目标节点
|
||
return cur;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="binary_search_tree.py"
|
||
def search(self, num: int) -> TreeNode | None:
|
||
"""查找节点"""
|
||
cur: TreeNode | None = self.__root
|
||
# 循环查找,越过叶节点后跳出
|
||
while cur is not None:
|
||
# 目标节点在 cur 的右子树中
|
||
if cur.val < num:
|
||
cur = cur.right
|
||
# 目标节点在 cur 的左子树中
|
||
elif cur.val > num:
|
||
cur = cur.left
|
||
# 找到目标节点,跳出循环
|
||
else:
|
||
break
|
||
return cur
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="binary_search_tree.go"
|
||
/* 查找节点 */
|
||
func (bst *binarySearchTree) search(num int) *TreeNode {
|
||
node := bst.root
|
||
// 循环查找,越过叶节点后跳出
|
||
for node != nil {
|
||
if node.Val < num {
|
||
// 目标节点在 cur 的右子树中
|
||
node = node.Right
|
||
} else if node.Val > num {
|
||
// 目标节点在 cur 的左子树中
|
||
node = node.Left
|
||
} else {
|
||
// 找到目标节点,跳出循环
|
||
break
|
||
}
|
||
}
|
||
// 返回目标节点
|
||
return node
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="binary_search_tree.js"
|
||
/* 查找节点 */
|
||
function search(num) {
|
||
let cur = root;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur !== null) {
|
||
// 目标节点在 cur 的右子树中
|
||
if (cur.val < num) cur = cur.right;
|
||
// 目标节点在 cur 的左子树中
|
||
else if (cur.val > num) cur = cur.left;
|
||
// 找到目标节点,跳出循环
|
||
else break;
|
||
}
|
||
// 返回目标节点
|
||
return cur;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="binary_search_tree.ts"
|
||
/* 查找节点 */
|
||
function search(num: number): TreeNode | null {
|
||
let cur = root;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur !== null) {
|
||
if (cur.val < num) {
|
||
cur = cur.right; // 目标节点在 cur 的右子树中
|
||
} else if (cur.val > num) {
|
||
cur = cur.left; // 目标节点在 cur 的左子树中
|
||
} else {
|
||
break; // 找到目标节点,跳出循环
|
||
}
|
||
}
|
||
// 返回目标节点
|
||
return cur;
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="binary_search_tree.c"
|
||
[class]{binarySearchTree}-[func]{search}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="binary_search_tree.cs"
|
||
/* 查找节点 */
|
||
TreeNode? search(int num)
|
||
{
|
||
TreeNode? cur = root;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur != null)
|
||
{
|
||
// 目标节点在 cur 的右子树中
|
||
if (cur.val < num) cur = cur.right;
|
||
// 目标节点在 cur 的左子树中
|
||
else if (cur.val > num) cur = cur.left;
|
||
// 找到目标节点,跳出循环
|
||
else break;
|
||
}
|
||
// 返回目标节点
|
||
return cur;
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="binary_search_tree.swift"
|
||
/* 查找节点 */
|
||
func search(num: Int) -> TreeNode? {
|
||
var cur = root
|
||
// 循环查找,越过叶节点后跳出
|
||
while cur != nil {
|
||
// 目标节点在 cur 的右子树中
|
||
if cur!.val < num {
|
||
cur = cur?.right
|
||
}
|
||
// 目标节点在 cur 的左子树中
|
||
else if cur!.val > num {
|
||
cur = cur?.left
|
||
}
|
||
// 找到目标节点,跳出循环
|
||
else {
|
||
break
|
||
}
|
||
}
|
||
// 返回目标节点
|
||
return cur
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="binary_search_tree.zig"
|
||
// 查找节点
|
||
fn search(self: *Self, num: T) ?*inc.TreeNode(T) {
|
||
var cur = self.root;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur != null) {
|
||
// 目标节点在 cur 的右子树中
|
||
if (cur.?.val < num) {
|
||
cur = cur.?.right;
|
||
// 目标节点在 cur 的左子树中
|
||
} else if (cur.?.val > num) {
|
||
cur = cur.?.left;
|
||
// 找到目标节点,跳出循环
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
// 返回目标节点
|
||
return cur;
|
||
}
|
||
```
|
||
|
||
### 插入节点
|
||
|
||
给定一个待插入元素 `num` ,为了保持二叉搜索树“左子树 < 根节点 < 右子树”的性质,插入操作分为两步:
|
||
|
||
1. **查找插入位置**:与查找操作相似,从根节点出发,根据当前节点值和 `num` 的大小关系循环向下搜索,直到越过叶节点(遍历至 $\text{null}$ )时跳出循环;
|
||
2. **在该位置插入节点**:初始化节点 `num` ,将该节点置于 $\text{null}$ 的位置;
|
||
|
||
二叉搜索树不允许存在重复节点,否则将违反其定义。因此,若待插入节点在树中已存在,则不执行插入,直接返回。
|
||
|
||
![在二叉搜索树中插入节点](binary_search_tree.assets/bst_insert.png)
|
||
|
||
<p align="center"> Fig. 在二叉搜索树中插入节点 </p>
|
||
|
||
=== "Java"
|
||
|
||
```java title="binary_search_tree.java"
|
||
/* 插入节点 */
|
||
void insert(int num) {
|
||
// 若树为空,直接提前返回
|
||
if (root == null)
|
||
return;
|
||
TreeNode cur = root, pre = null;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur != null) {
|
||
// 找到重复节点,直接返回
|
||
if (cur.val == num)
|
||
return;
|
||
pre = cur;
|
||
// 插入位置在 cur 的右子树中
|
||
if (cur.val < num)
|
||
cur = cur.right;
|
||
// 插入位置在 cur 的左子树中
|
||
else
|
||
cur = cur.left;
|
||
}
|
||
// 插入节点 val
|
||
TreeNode node = new TreeNode(num);
|
||
if (pre.val < num)
|
||
pre.right = node;
|
||
else
|
||
pre.left = node;
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="binary_search_tree.cpp"
|
||
/* 插入节点 */
|
||
void insert(int num) {
|
||
// 若树为空,直接提前返回
|
||
if (root == nullptr)
|
||
return;
|
||
TreeNode *cur = root, *pre = nullptr;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur != nullptr) {
|
||
// 找到重复节点,直接返回
|
||
if (cur->val == num)
|
||
return;
|
||
pre = cur;
|
||
// 插入位置在 cur 的右子树中
|
||
if (cur->val < num)
|
||
cur = cur->right;
|
||
// 插入位置在 cur 的左子树中
|
||
else
|
||
cur = cur->left;
|
||
}
|
||
// 插入节点 val
|
||
TreeNode *node = new TreeNode(num);
|
||
if (pre->val < num)
|
||
pre->right = node;
|
||
else
|
||
pre->left = node;
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="binary_search_tree.py"
|
||
def insert(self, num: int) -> None:
|
||
"""插入节点"""
|
||
# 若树为空,直接提前返回
|
||
if self.__root is None:
|
||
return
|
||
|
||
# 循环查找,越过叶节点后跳出
|
||
cur, pre = self.__root, None
|
||
while cur is not None:
|
||
# 找到重复节点,直接返回
|
||
if cur.val == num:
|
||
return
|
||
pre = cur
|
||
# 插入位置在 cur 的右子树中
|
||
if cur.val < num:
|
||
cur = cur.right
|
||
# 插入位置在 cur 的左子树中
|
||
else:
|
||
cur = cur.left
|
||
|
||
# 插入节点 val
|
||
node = TreeNode(num)
|
||
if pre.val < num:
|
||
pre.right = node
|
||
else:
|
||
pre.left = node
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="binary_search_tree.go"
|
||
/* 插入节点 */
|
||
func (bst *binarySearchTree) insert(num int) {
|
||
cur := bst.root
|
||
// 若树为空,直接提前返回
|
||
if cur == nil {
|
||
return
|
||
}
|
||
// 待插入节点之前的节点位置
|
||
var pre *TreeNode = nil
|
||
// 循环查找,越过叶节点后跳出
|
||
for cur != nil {
|
||
if cur.Val == num {
|
||
return
|
||
}
|
||
pre = cur
|
||
if cur.Val < num {
|
||
cur = cur.Right
|
||
} else {
|
||
cur = cur.Left
|
||
}
|
||
}
|
||
// 插入节点
|
||
node := NewTreeNode(num)
|
||
if pre.Val < num {
|
||
pre.Right = node
|
||
} else {
|
||
pre.Left = node
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="binary_search_tree.js"
|
||
/* 插入节点 */
|
||
function insert(num) {
|
||
// 若树为空,直接提前返回
|
||
if (root === null) return;
|
||
let cur = root, pre = null;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur !== null) {
|
||
// 找到重复节点,直接返回
|
||
if (cur.val === num) return;
|
||
pre = cur;
|
||
// 插入位置在 cur 的右子树中
|
||
if (cur.val < num) cur = cur.right;
|
||
// 插入位置在 cur 的左子树中
|
||
else cur = cur.left;
|
||
}
|
||
// 插入节点 val
|
||
let node = new TreeNode(num);
|
||
if (pre.val < num) pre.right = node;
|
||
else pre.left = node;
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="binary_search_tree.ts"
|
||
/* 插入节点 */
|
||
function insert(num: number): void {
|
||
// 若树为空,直接提前返回
|
||
if (root === null) {
|
||
return;
|
||
}
|
||
let cur = root,
|
||
pre: TreeNode | null = null;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur !== null) {
|
||
if (cur.val === num) {
|
||
return; // 找到重复节点,直接返回
|
||
}
|
||
pre = cur;
|
||
if (cur.val < num) {
|
||
cur = cur.right as TreeNode; // 插入位置在 cur 的右子树中
|
||
} else {
|
||
cur = cur.left as TreeNode; // 插入位置在 cur 的左子树中
|
||
}
|
||
}
|
||
// 插入节点 val
|
||
let node = new TreeNode(num);
|
||
if (pre!.val < num) {
|
||
pre!.right = node;
|
||
} else {
|
||
pre!.left = node;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="binary_search_tree.c"
|
||
[class]{binarySearchTree}-[func]{insert}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="binary_search_tree.cs"
|
||
/* 插入节点 */
|
||
void insert(int num)
|
||
{
|
||
// 若树为空,直接提前返回
|
||
if (root == null) return;
|
||
TreeNode? cur = root, pre = null;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur != null)
|
||
{
|
||
// 找到重复节点,直接返回
|
||
if (cur.val == num) return;
|
||
pre = cur;
|
||
// 插入位置在 cur 的右子树中
|
||
if (cur.val < num) cur = cur.right;
|
||
// 插入位置在 cur 的左子树中
|
||
else cur = cur.left;
|
||
}
|
||
|
||
// 插入节点 val
|
||
TreeNode node = new TreeNode(num);
|
||
if (pre != null)
|
||
{
|
||
if (pre.val < num) pre.right = node;
|
||
else pre.left = node;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="binary_search_tree.swift"
|
||
/* 插入节点 */
|
||
func insert(num: Int) {
|
||
// 若树为空,直接提前返回
|
||
if root == nil {
|
||
return
|
||
}
|
||
var cur = root
|
||
var pre: TreeNode?
|
||
// 循环查找,越过叶节点后跳出
|
||
while cur != nil {
|
||
// 找到重复节点,直接返回
|
||
if cur!.val == num {
|
||
return
|
||
}
|
||
pre = cur
|
||
// 插入位置在 cur 的右子树中
|
||
if cur!.val < num {
|
||
cur = cur?.right
|
||
}
|
||
// 插入位置在 cur 的左子树中
|
||
else {
|
||
cur = cur?.left
|
||
}
|
||
}
|
||
// 插入节点 val
|
||
let node = TreeNode(x: num)
|
||
if pre!.val < num {
|
||
pre?.right = node
|
||
} else {
|
||
pre?.left = node
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="binary_search_tree.zig"
|
||
// 插入节点
|
||
fn insert(self: *Self, num: T) !void {
|
||
// 若树为空,直接提前返回
|
||
if (self.root == null) return;
|
||
var cur = self.root;
|
||
var pre: ?*inc.TreeNode(T) = null;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur != null) {
|
||
// 找到重复节点,直接返回
|
||
if (cur.?.val == num) return;
|
||
pre = cur;
|
||
// 插入位置在 cur 的右子树中
|
||
if (cur.?.val < num) {
|
||
cur = cur.?.right;
|
||
// 插入位置在 cur 的左子树中
|
||
} else {
|
||
cur = cur.?.left;
|
||
}
|
||
}
|
||
// 插入节点 val
|
||
var node = try self.mem_allocator.create(inc.TreeNode(T));
|
||
node.init(num);
|
||
if (pre.?.val < num) {
|
||
pre.?.right = node;
|
||
} else {
|
||
pre.?.left = node;
|
||
}
|
||
}
|
||
```
|
||
|
||
为了插入节点,我们需要利用辅助节点 `pre` 保存上一轮循环的节点,这样在遍历至 $\text{null}$ 时,我们可以获取到其父节点,从而完成节点插入操作。
|
||
|
||
与查找节点相同,插入节点使用 $O(\log n)$ 时间。
|
||
|
||
### 删除节点
|
||
|
||
与插入节点类似,我们需要在删除操作后维持二叉搜索树的“左子树 < 根节点 < 右子树”的性质。首先,我们需要在二叉树中执行查找操作,获取待删除节点。接下来,根据待删除节点的子节点数量,删除操作需分为三种情况:
|
||
|
||
当待删除节点的子节点数量 $= 0$ 时,表示待删除节点是叶节点,可以直接删除。
|
||
|
||
![在二叉搜索树中删除节点(度为 0)](binary_search_tree.assets/bst_remove_case1.png)
|
||
|
||
<p align="center"> Fig. 在二叉搜索树中删除节点(度为 0) </p>
|
||
|
||
当待删除节点的子节点数量 $= 1$ 时,将待删除节点替换为其子节点即可。
|
||
|
||
![在二叉搜索树中删除节点(度为 1)](binary_search_tree.assets/bst_remove_case2.png)
|
||
|
||
<p align="center"> Fig. 在二叉搜索树中删除节点(度为 1) </p>
|
||
|
||
当待删除节点的子节点数量 $= 2$ 时,删除操作分为三步:
|
||
|
||
1. 找到待删除节点在“中序遍历序列”中的下一个节点,记为 `tmp` ;
|
||
2. 在树中递归删除节点 `tmp` ;
|
||
3. 用 `tmp` 的值覆盖待删除节点的值;
|
||
|
||
=== "<1>"
|
||
![bst_remove_case3_step1](binary_search_tree.assets/bst_remove_case3_step1.png)
|
||
|
||
=== "<2>"
|
||
![bst_remove_case3_step2](binary_search_tree.assets/bst_remove_case3_step2.png)
|
||
|
||
=== "<3>"
|
||
![bst_remove_case3_step3](binary_search_tree.assets/bst_remove_case3_step3.png)
|
||
|
||
=== "<4>"
|
||
![bst_remove_case3_step4](binary_search_tree.assets/bst_remove_case3_step4.png)
|
||
|
||
删除节点操作同样使用 $O(\log n)$ 时间,其中查找待删除节点需要 $O(\log n)$ 时间,获取中序遍历后继节点需要 $O(\log n)$ 时间。
|
||
|
||
=== "Java"
|
||
|
||
```java title="binary_search_tree.java"
|
||
/* 删除节点 */
|
||
void remove(int num) {
|
||
// 若树为空,直接提前返回
|
||
if (root == null)
|
||
return;
|
||
TreeNode cur = root, pre = null;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur != null) {
|
||
// 找到待删除节点,跳出循环
|
||
if (cur.val == num)
|
||
break;
|
||
pre = cur;
|
||
// 待删除节点在 cur 的右子树中
|
||
if (cur.val < num)
|
||
cur = cur.right;
|
||
// 待删除节点在 cur 的左子树中
|
||
else
|
||
cur = cur.left;
|
||
}
|
||
// 若无待删除节点,则直接返回
|
||
if (cur == null)
|
||
return;
|
||
// 子节点数量 = 0 or 1
|
||
if (cur.left == null || cur.right == null) {
|
||
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
|
||
TreeNode child = cur.left != null ? cur.left : cur.right;
|
||
// 删除节点 cur
|
||
if (pre.left == cur)
|
||
pre.left = child;
|
||
else
|
||
pre.right = child;
|
||
}
|
||
// 子节点数量 = 2
|
||
else {
|
||
// 获取中序遍历中 cur 的下一个节点
|
||
TreeNode tmp = cur.right;
|
||
while (tmp.left != null) {
|
||
tmp = tmp.left;
|
||
}
|
||
// 递归删除节点 tmp
|
||
remove(tmp.val);
|
||
// 用 tmp 覆盖 cur
|
||
cur.val = tmp.val;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="binary_search_tree.cpp"
|
||
/* 删除节点 */
|
||
void remove(int num) {
|
||
// 若树为空,直接提前返回
|
||
if (root == nullptr)
|
||
return;
|
||
TreeNode *cur = root, *pre = nullptr;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur != nullptr) {
|
||
// 找到待删除节点,跳出循环
|
||
if (cur->val == num)
|
||
break;
|
||
pre = cur;
|
||
// 待删除节点在 cur 的右子树中
|
||
if (cur->val < num)
|
||
cur = cur->right;
|
||
// 待删除节点在 cur 的左子树中
|
||
else
|
||
cur = cur->left;
|
||
}
|
||
// 若无待删除节点,则直接返回
|
||
if (cur == nullptr)
|
||
return;
|
||
// 子节点数量 = 0 or 1
|
||
if (cur->left == nullptr || cur->right == nullptr) {
|
||
// 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点
|
||
TreeNode *child = cur->left != nullptr ? cur->left : cur->right;
|
||
// 删除节点 cur
|
||
if (pre->left == cur)
|
||
pre->left = child;
|
||
else
|
||
pre->right = child;
|
||
// 释放内存
|
||
delete cur;
|
||
}
|
||
// 子节点数量 = 2
|
||
else {
|
||
// 获取中序遍历中 cur 的下一个节点
|
||
TreeNode *tmp = cur->right;
|
||
while (tmp->left != nullptr) {
|
||
tmp = tmp->left;
|
||
}
|
||
int tmpVal = tmp->val;
|
||
// 递归删除节点 tmp
|
||
remove(tmp->val);
|
||
// 用 tmp 覆盖 cur
|
||
cur->val = tmpVal;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="binary_search_tree.py"
|
||
def remove(self, num: int) -> None:
|
||
"""删除节点"""
|
||
# 若树为空,直接提前返回
|
||
if self.__root is None:
|
||
return
|
||
|
||
# 循环查找,越过叶节点后跳出
|
||
cur, pre = self.__root, None
|
||
while cur is not None:
|
||
# 找到待删除节点,跳出循环
|
||
if cur.val == num:
|
||
break
|
||
pre = cur
|
||
# 待删除节点在 cur 的右子树中
|
||
if cur.val < num:
|
||
cur = cur.right
|
||
# 待删除节点在 cur 的左子树中
|
||
else:
|
||
cur = cur.left
|
||
# 若无待删除节点,则直接返回
|
||
if cur is None:
|
||
return
|
||
|
||
# 子节点数量 = 0 or 1
|
||
if cur.left is None or cur.right is None:
|
||
# 当子节点数量 = 0 / 1 时, child = null / 该子节点
|
||
child = cur.left or cur.right
|
||
# 删除节点 cur
|
||
if pre.left == cur:
|
||
pre.left = child
|
||
else:
|
||
pre.right = child
|
||
# 子节点数量 = 2
|
||
else:
|
||
# 获取中序遍历中 cur 的下一个节点
|
||
tmp: TreeNode = cur.right
|
||
while tmp.left is not None:
|
||
tmp = tmp.left
|
||
# 递归删除节点 tmp
|
||
self.remove(tmp.val)
|
||
# 用 tmp 覆盖 cur
|
||
cur.val = tmp.val
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="binary_search_tree.go"
|
||
/* 删除节点 */
|
||
func (bst *binarySearchTree) remove(num int) {
|
||
cur := bst.root
|
||
// 若树为空,直接提前返回
|
||
if cur == nil {
|
||
return
|
||
}
|
||
// 待删除节点之前的节点位置
|
||
var pre *TreeNode = nil
|
||
// 循环查找,越过叶节点后跳出
|
||
for cur != nil {
|
||
if cur.Val == num {
|
||
break
|
||
}
|
||
pre = cur
|
||
if cur.Val < num {
|
||
// 待删除节点在右子树中
|
||
cur = cur.Right
|
||
} else {
|
||
// 待删除节点在左子树中
|
||
cur = cur.Left
|
||
}
|
||
}
|
||
// 若无待删除节点,则直接返回
|
||
if cur == nil {
|
||
return
|
||
}
|
||
// 子节点数为 0 或 1
|
||
if cur.Left == nil || cur.Right == nil {
|
||
var child *TreeNode = nil
|
||
// 取出待删除节点的子节点
|
||
if cur.Left != nil {
|
||
child = cur.Left
|
||
} else {
|
||
child = cur.Right
|
||
}
|
||
// 将子节点替换为待删除节点
|
||
if pre.Left == cur {
|
||
pre.Left = child
|
||
} else {
|
||
pre.Right = child
|
||
}
|
||
// 子节点数为 2
|
||
} else {
|
||
// 获取中序遍历中待删除节点 cur 的下一个节点
|
||
tmp := cur.Right
|
||
for tmp.Left != nil {
|
||
tmp = tmp.Left
|
||
}
|
||
// 递归删除节点 tmp
|
||
bst.remove(tmp.Val)
|
||
// 用 tmp 覆盖 cur
|
||
cur.Val = tmp.Val
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="binary_search_tree.js"
|
||
/* 删除节点 */
|
||
function remove(num) {
|
||
// 若树为空,直接提前返回
|
||
if (root === null) return;
|
||
let cur = root, pre = null;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur !== null) {
|
||
// 找到待删除节点,跳出循环
|
||
if (cur.val === num) break;
|
||
pre = cur;
|
||
// 待删除节点在 cur 的右子树中
|
||
if (cur.val < num) cur = cur.right;
|
||
// 待删除节点在 cur 的左子树中
|
||
else cur = cur.left;
|
||
}
|
||
// 若无待删除节点,则直接返回
|
||
if (cur === null) return;
|
||
// 子节点数量 = 0 or 1
|
||
if (cur.left === null || cur.right === null) {
|
||
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
|
||
let child = cur.left !== null ? cur.left : cur.right;
|
||
// 删除节点 cur
|
||
if (pre.left === cur) pre.left = child;
|
||
else pre.right = child;
|
||
}
|
||
// 子节点数量 = 2
|
||
else {
|
||
// 获取中序遍历中 cur 的下一个节点
|
||
let tmp = cur.right;
|
||
while (tmp.left !== null) {
|
||
tmp = tmp.left;
|
||
}
|
||
// 递归删除节点 tmp
|
||
remove(tmp.val);
|
||
// 用 tmp 覆盖 cur
|
||
cur.val = tmp.val;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="binary_search_tree.ts"
|
||
/* 删除节点 */
|
||
function remove(num: number): void {
|
||
// 若树为空,直接提前返回
|
||
if (root === null) {
|
||
return;
|
||
}
|
||
let cur = root,
|
||
pre: TreeNode | null = null;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur !== null) {
|
||
// 找到待删除节点,跳出循环
|
||
if (cur.val === num) {
|
||
break;
|
||
}
|
||
pre = cur;
|
||
if (cur.val < num) {
|
||
cur = cur.right as TreeNode; // 待删除节点在 cur 的右子树中
|
||
} else {
|
||
cur = cur.left as TreeNode; // 待删除节点在 cur 的左子树中
|
||
}
|
||
}
|
||
// 若无待删除节点,则直接返回
|
||
if (cur === null) {
|
||
return;
|
||
}
|
||
// 子节点数量 = 0 or 1
|
||
if (cur.left === null || cur.right === null) {
|
||
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
|
||
let child = cur.left !== null ? cur.left : cur.right;
|
||
// 删除节点 cur
|
||
if (pre!.left === cur) {
|
||
pre!.left = child;
|
||
} else {
|
||
pre!.right = child;
|
||
}
|
||
}
|
||
// 子节点数量 = 2
|
||
else {
|
||
// 获取中序遍历中 cur 的下一个节点
|
||
let tmp = cur.right;
|
||
while (tmp.left !== null) {
|
||
tmp = tmp.left;
|
||
}
|
||
// 递归删除节点 tmp
|
||
remove(tmp!.val);
|
||
// 用 tmp 覆盖 cur
|
||
cur.val = tmp.val;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="binary_search_tree.c"
|
||
[class]{binarySearchTree}-[func]{remove}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="binary_search_tree.cs"
|
||
/* 删除节点 */
|
||
void remove(int num)
|
||
{
|
||
// 若树为空,直接提前返回
|
||
if (root == null) return;
|
||
TreeNode? cur = root, pre = null;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur != null)
|
||
{
|
||
// 找到待删除节点,跳出循环
|
||
if (cur.val == num) break;
|
||
pre = cur;
|
||
// 待删除节点在 cur 的右子树中
|
||
if (cur.val < num) cur = cur.right;
|
||
// 待删除节点在 cur 的左子树中
|
||
else cur = cur.left;
|
||
}
|
||
// 若无待删除节点,则直接返回
|
||
if (cur == null || pre == null) return;
|
||
// 子节点数量 = 0 or 1
|
||
if (cur.left == null || cur.right == null)
|
||
{
|
||
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
|
||
TreeNode? child = cur.left != null ? cur.left : cur.right;
|
||
// 删除节点 cur
|
||
if (pre.left == cur)
|
||
{
|
||
pre.left = child;
|
||
}
|
||
else
|
||
{
|
||
pre.right = child;
|
||
}
|
||
}
|
||
// 子节点数量 = 2
|
||
else
|
||
{
|
||
// 获取中序遍历中 cur 的下一个节点
|
||
TreeNode? tmp = cur.right;
|
||
while (tmp.left != null)
|
||
{
|
||
tmp = tmp.left;
|
||
}
|
||
// 递归删除节点 tmp
|
||
remove(tmp.val);
|
||
// 用 tmp 覆盖 cur
|
||
cur.val = tmp.val;
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="binary_search_tree.swift"
|
||
/* 删除节点 */
|
||
@discardableResult
|
||
func remove(num: Int) {
|
||
// 若树为空,直接提前返回
|
||
if root == nil {
|
||
return
|
||
}
|
||
var cur = root
|
||
var pre: TreeNode?
|
||
// 循环查找,越过叶节点后跳出
|
||
while cur != nil {
|
||
// 找到待删除节点,跳出循环
|
||
if cur!.val == num {
|
||
break
|
||
}
|
||
pre = cur
|
||
// 待删除节点在 cur 的右子树中
|
||
if cur!.val < num {
|
||
cur = cur?.right
|
||
}
|
||
// 待删除节点在 cur 的左子树中
|
||
else {
|
||
cur = cur?.left
|
||
}
|
||
}
|
||
// 若无待删除节点,则直接返回
|
||
if cur == nil {
|
||
return
|
||
}
|
||
// 子节点数量 = 0 or 1
|
||
if cur?.left == nil || cur?.right == nil {
|
||
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
|
||
let child = cur?.left != nil ? cur?.left : cur?.right
|
||
// 删除节点 cur
|
||
if pre?.left === cur {
|
||
pre?.left = child
|
||
} else {
|
||
pre?.right = child
|
||
}
|
||
}
|
||
// 子节点数量 = 2
|
||
else {
|
||
// 获取中序遍历中 cur 的下一个节点
|
||
let tmp = cur?.right
|
||
while tmp?.left != nil {
|
||
tmp = tmp?.left
|
||
}
|
||
// 递归删除节点 tmp
|
||
remove(num: tmp!.val)
|
||
// 用 tmp 覆盖 cur
|
||
cur?.val = tmp!.val
|
||
}
|
||
}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="binary_search_tree.zig"
|
||
// 删除节点
|
||
fn remove(self: *Self, num: T) !void {
|
||
// 若树为空,直接提前返回
|
||
if (self.root == null) return;
|
||
var cur = self.root;
|
||
var pre: ?*inc.TreeNode(T) = null;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur != null) {
|
||
// 找到待删除节点,跳出循环
|
||
if (cur.?.val == num) break;
|
||
pre = cur;
|
||
// 待删除节点在 cur 的右子树中
|
||
if (cur.?.val < num) {
|
||
cur = cur.?.right;
|
||
// 待删除节点在 cur 的左子树中
|
||
} else {
|
||
cur = cur.?.left;
|
||
}
|
||
}
|
||
// 若无待删除节点,则直接返回
|
||
if (cur == null) return;
|
||
// 子节点数量 = 0 or 1
|
||
if (cur.?.left == null or cur.?.right == null) {
|
||
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
|
||
var child = if (cur.?.left != null) cur.?.left else cur.?.right;
|
||
// 删除节点 cur
|
||
if (pre.?.left == cur) {
|
||
pre.?.left = child;
|
||
} else {
|
||
pre.?.right = child;
|
||
}
|
||
// 子节点数量 = 2
|
||
} else {
|
||
// 获取中序遍历中 cur 的下一个节点
|
||
var tmp = cur.?.right;
|
||
while (tmp.?.left != null) {
|
||
tmp = tmp.?.left;
|
||
}
|
||
var tmpVal = tmp.?.val;
|
||
// 递归删除节点 tmp
|
||
_ = self.remove(tmp.?.val);
|
||
// 用 tmp 覆盖 cur
|
||
cur.?.val = tmpVal;
|
||
}
|
||
}
|
||
```
|
||
|
||
### 排序
|
||
|
||
我们知道,二叉树的中序遍历遵循“左 $\rightarrow$ 根 $\rightarrow$ 右”的遍历顺序,而二叉搜索树满足“左子节点 $<$ 根节点 $<$ 右子节点”的大小关系。因此,在二叉搜索树中进行中序遍历时,总是会优先遍历下一个最小节点,从而得出一个重要性质:**二叉搜索树的中序遍历序列是升序的**。
|
||
|
||
利用中序遍历升序的性质,我们在二叉搜索树中获取有序数据仅需 $O(n)$ 时间,无需额外排序,非常高效。
|
||
|
||
![二叉搜索树的中序遍历序列](binary_search_tree.assets/bst_inorder_traversal.png)
|
||
|
||
<p align="center"> Fig. 二叉搜索树的中序遍历序列 </p>
|
||
|
||
## 7.3.2. 二叉搜索树的效率
|
||
|
||
假设给定 $n$ 个数字,最常见的存储方式是「数组」。对于这串乱序的数字,常见操作的效率如下:
|
||
|
||
- **查找元素**:由于数组是无序的,因此需要遍历数组来确定,使用 $O(n)$ 时间;
|
||
- **插入元素**:只需将元素添加至数组尾部即可,使用 $O(1)$ 时间;
|
||
- **删除元素**:先查找元素,使用 $O(n)$ 时间,再在数组中删除该元素,使用 $O(n)$ 时间;
|
||
- **获取最小 / 最大元素**:需要遍历数组来确定,使用 $O(n)$ 时间;
|
||
|
||
为了获得先验信息,我们可以预先将数组元素进行排序,得到一个「排序数组」。此时操作效率如下:
|
||
|
||
- **查找元素**:由于数组已排序,可以使用二分查找,平均使用 $O(\log n)$ 时间;
|
||
- **插入元素**:先查找插入位置,使用 $O(\log n)$ 时间,再插入到指定位置,使用 $O(n)$ 时间;
|
||
- **删除元素**:先查找元素,使用 $O(\log n)$ 时间,再在数组中删除该元素,使用 $O(n)$ 时间;
|
||
- **获取最小 / 最大元素**:数组头部和尾部元素即是最小和最大元素,使用 $O(1)$ 时间;
|
||
|
||
观察可知,无序数组和有序数组中的各项操作的时间复杂度呈现“偏科”的特点,即有的快有的慢。**然而,二叉搜索树的各项操作的时间复杂度都是对数阶,在数据量 $n$ 较大时具有显著优势**。
|
||
|
||
<div class="center-table" markdown>
|
||
|
||
| | 无序数组 | 有序数组 | 二叉搜索树 |
|
||
| ------------------- | -------- | ----------- | ----------- |
|
||
| 查找指定元素 | $O(n)$ | $O(\log n)$ | $O(\log n)$ |
|
||
| 插入元素 | $O(1)$ | $O(n)$ | $O(\log n)$ |
|
||
| 删除元素 | $O(n)$ | $O(n)$ | $O(\log n)$ |
|
||
| 获取最小 / 最大元素 | $O(n)$ | $O(1)$ | $O(\log n)$ |
|
||
|
||
</div>
|
||
|
||
## 7.3.3. 二叉搜索树的退化
|
||
|
||
在理想情况下,我们希望二叉搜索树是“平衡”的,这样就可以在 $\log n$ 轮循环内查找任意节点。
|
||
|
||
然而,如果我们在二叉搜索树中不断地插入和删除节点,可能导致二叉树退化为链表,这时各种操作的时间复杂度也会退化为 $O(n)$ 。
|
||
|
||
![二叉搜索树的平衡与退化](binary_search_tree.assets/bst_degradation.png)
|
||
|
||
<p align="center"> Fig. 二叉搜索树的平衡与退化 </p>
|
||
|
||
## 7.3.4. 二叉搜索树常见应用
|
||
|
||
- 用作系统中的多级索引,实现高效的查找、插入、删除操作。
|
||
- 作为某些搜索算法的底层数据结构。
|
||
- 用于存储数据流,以保持其有序状态。
|