Refactor the section of binary search edge. Finetune the figures of binary search.
7.5 KiB
二分查找插入点
二分查找不仅可用于搜索目标元素,还具有许多变种问题,比如搜索目标元素的插入位置。
无重复元素的情况
!!! question
给定一个长度为 $n$ 的有序数组 `nums` 和一个元素 `target` ,数组不存在重复元素。现将 `target` 插入到数组 `nums` 中,并保持其有序性。若数组中已存在元素 `target` ,则插入到其左方。请返回插入后 `target` 在数组中的索引。
如果想要复用上节的二分查找代码,则需要回答以下两个问题。
问题一:当数组中包含 target
时,插入点的索引是否是该元素的索引?
题目要求将 target
插入到相等元素的左边,这意味着新插入的 target
替换了原来 target
的位置。也就是说,当数组包含 target
时,插入点的索引就是该 target
的索引。
问题二:当数组中不存在 target
时,插入点是哪个元素的索引?
进一步思考二分查找过程:当 nums[m] < target
时 i
移动,这意味着指针 i
在向大于等于 target
的元素靠近。同理,指针 j
始终在向小于等于 target
的元素靠近。
因此二分结束时一定有:i
指向首个大于 target
的元素,j
指向首个小于 target
的元素。易得当数组不包含 target
时,插入索引为 $i$ 。
=== "Java"
```java title="binary_search_insertion.java"
[class]{binary_search_insertion}-[func]{binarySearchInsertionSimple}
```
=== "C++"
```cpp title="binary_search_insertion.cpp"
[class]{}-[func]{binarySearchInsertionSimple}
```
=== "Python"
```python title="binary_search_insertion.py"
[class]{}-[func]{binary_search_insertion_simple}
```
=== "Go"
```go title="binary_search_insertion.go"
[class]{}-[func]{binarySearchInsertionSimple}
```
=== "JS"
```javascript title="binary_search_insertion.js"
[class]{}-[func]{binarySearchInsertionSimple}
```
=== "TS"
```typescript title="binary_search_insertion.ts"
[class]{}-[func]{binarySearchInsertionSimple}
```
=== "C"
```c title="binary_search_insertion.c"
[class]{}-[func]{binarySearchInsertionSimple}
```
=== "C#"
```csharp title="binary_search_insertion.cs"
[class]{binary_search_insertion}-[func]{binarySearchInsertionSimple}
```
=== "Swift"
```swift title="binary_search_insertion.swift"
[class]{}-[func]{binarySearchInsertionSimple}
```
=== "Zig"
```zig title="binary_search_insertion.zig"
[class]{}-[func]{binarySearchInsertionSimple}
```
=== "Dart"
```dart title="binary_search_insertion.dart"
[class]{}-[func]{binarySearchInsertionSimple}
```
=== "Rust"
```rust title="binary_search_insertion.rs"
[class]{}-[func]{binary_search_insertion}
```
存在重复元素的情况
!!! question
在上一题的基础上,规定数组可能包含重复元素,其余不变。
假设数组中存在多个 target
,则普通二分查找只能返回其中一个 target
的索引,而无法确定该元素的左边和右边还有多少 target
。
题目要求将目标元素插入到最左边,所以我们需要查找数组中最左一个 target
的索引。初步考虑通过以下两步实现:
- 执行二分查找,得到任意一个
target
的索引,记为k
。 - 从索引
k
开始,向左进行线性遍历,当找到最左边的target
时返回。
此方法虽然可用,但其包含线性查找,因此时间复杂度为 O(n)
。当数组中存在很多重复的 target
时,该方法效率很低。
现考虑修改二分查找代码。整体流程不变,每轮先计算中点索引 m
,再判断 target
和 nums[m]
大小关系:
- 当
nums[m] < target
或nums[m] > target
时,说明还没有找到target
,因此采用普通二分查找的缩小区间操作,从而使指针i
和j
向target
靠近。 - 当
nums[m] == target
时,说明小于target
的元素在区间[i, m - 1]
中,因此采用j = m - 1
来缩小区间,从而使指针j
向小于target
的元素靠近。
循环完成后,i
指向最左边的 target
,j
指向首个小于 target
的元素,因此索引 i
就是插入点。
观察以下代码,判断分支 nums[m] > target
和 nums[m] == target
的操作相同,因此两者可以合并。
即便如此,我们仍然可以将判断条件保持展开,因为其逻辑更加清晰、可读性更好。
=== "Java"
```java title="binary_search_insertion.java"
[class]{binary_search_insertion}-[func]{binarySearchInsertion}
```
=== "C++"
```cpp title="binary_search_insertion.cpp"
[class]{}-[func]{binarySearchInsertion}
```
=== "Python"
```python title="binary_search_insertion.py"
[class]{}-[func]{binary_search_insertion}
```
=== "Go"
```go title="binary_search_insertion.go"
[class]{}-[func]{binarySearchInsertion}
```
=== "JS"
```javascript title="binary_search_insertion.js"
[class]{}-[func]{binarySearchInsertion}
```
=== "TS"
```typescript title="binary_search_insertion.ts"
[class]{}-[func]{binarySearchInsertion}
```
=== "C"
```c title="binary_search_insertion.c"
[class]{}-[func]{binarySearchInsertion}
```
=== "C#"
```csharp title="binary_search_insertion.cs"
[class]{binary_search_insertion}-[func]{binarySearchInsertion}
```
=== "Swift"
```swift title="binary_search_insertion.swift"
[class]{}-[func]{binarySearchInsertion}
```
=== "Zig"
```zig title="binary_search_insertion.zig"
[class]{}-[func]{binarySearchInsertion}
```
=== "Dart"
```dart title="binary_search_insertion.dart"
[class]{}-[func]{binarySearchInsertion}
```
=== "Rust"
```rust title="binary_search_insertion.rs"
[class]{}-[func]{binary_search_insertion}
```
!!! tip
本节的代码都是“双闭区间”写法。有兴趣的读者可以自行实现“左闭右开”写法。
总的来看,二分查找无非就是给指针 i
, j
分别设定搜索目标,目标可能是一个具体的元素(例如 target
),也可能是一个元素范围(例如小于 target
的元素)。
在不断的循环二分中,指针 i
, j
都逐渐逼近预先设定的目标。最终,它们或是成功找到答案,或是越过边界后停止。