hello-algo/zh-hant/docs/chapter_heap/build_heap.md
Yudong Jin 5f7385c8a3
feat: Traditional Chinese version (#1163)
* First commit

* Update mkdocs.yml

* Translate all the docs to traditional Chinese

* Translate the code files.

* Translate the docker file

* Fix mkdocs.yml

* Translate all the figures from SC to TC

* 二叉搜尋樹 -> 二元搜尋樹

* Update terminology.

* Update terminology

* 构造函数/构造方法 -> 建構子
异或 -> 互斥或

* 擴充套件 -> 擴展

* constant - 常量 - 常數

* 類	-> 類別

* AVL -> AVL 樹

* 數組 -> 陣列

* 係統 -> 系統
斐波那契數列 -> 費波那契數列
運算元量 -> 運算量
引數 -> 參數

* 聯絡 -> 關聯

* 麵試 -> 面試

* 面向物件 -> 物件導向
歸併排序 -> 合併排序
范式 -> 範式

* Fix 算法 -> 演算法

* 錶示 -> 表示
反碼 -> 一補數
補碼 -> 二補數
列列尾部 -> 佇列尾部
區域性性 -> 區域性
一摞 -> 一疊

* Synchronize with main branch

* 賬號 -> 帳號
推匯 -> 推導

* Sync with main branch

* First commit

* Update mkdocs.yml

* Translate all the docs to traditional Chinese

* Translate the code files.

* Translate the docker file

* Fix mkdocs.yml

* Translate all the figures from SC to TC

* 二叉搜尋樹 -> 二元搜尋樹

* Update terminology

* 构造函数/构造方法 -> 建構子
异或 -> 互斥或

* 擴充套件 -> 擴展

* constant - 常量 - 常數

* 類	-> 類別

* AVL -> AVL 樹

* 數組 -> 陣列

* 係統 -> 系統
斐波那契數列 -> 費波那契數列
運算元量 -> 運算量
引數 -> 參數

* 聯絡 -> 關聯

* 麵試 -> 面試

* 面向物件 -> 物件導向
歸併排序 -> 合併排序
范式 -> 範式

* Fix 算法 -> 演算法

* 錶示 -> 表示
反碼 -> 一補數
補碼 -> 二補數
列列尾部 -> 佇列尾部
區域性性 -> 區域性
一摞 -> 一疊

* Synchronize with main branch

* 賬號 -> 帳號
推匯 -> 推導

* Sync with main branch

* Update terminology.md

* 操作数量(num. of operations)-> 操作數量

* 字首和->前綴和

* Update figures

* 歸 -> 迴
記憶體洩漏 -> 記憶體流失

* Fix the bug of the file filter

* 支援 -> 支持
Add zh-Hant/README.md

* Add the zh-Hant chapter covers.
Bug fixes.

* 外掛 -> 擴充功能

* Add the landing page for zh-Hant version

* Unify the font of the chapter covers for the zh, en, and zh-Hant version

* Move zh-Hant/ to zh-hant/

* Translate terminology.md to traditional Chinese
2024-04-06 02:30:11 +08:00

3.8 KiB

建堆積操作

在某些情況下,我們希望使用一個串列的所有元素來構建一個堆積,這個過程被稱為“建堆積操作”。

藉助入堆積操作實現

我們首先建立一個空堆積,然後走訪串列,依次對每個元素執行“入堆積操作”,即先將元素新增至堆積的尾部,再對該元素執行“從底至頂”堆積化。

每當一個元素入堆積,堆積的長度就加一。由於節點是從頂到底依次被新增進二元樹的,因此堆積是“自上而下”構建的。

設元素數量為 n ,每個元素的入堆積操作使用 O(\log{n}) 時間,因此該建堆積方法的時間複雜度為 O(n \log n)

透過走訪堆積化實現

實際上,我們可以實現一種更為高效的建堆積方法,共分為兩步。

  1. 將串列所有元素原封不動地新增到堆積中,此時堆積的性質尚未得到滿足。
  2. 倒序走訪堆積(層序走訪的倒序),依次對每個非葉節點執行“從頂至底堆積化”。

每當堆積化一個節點後,以該節點為根節點的子樹就形成一個合法的子堆積。而由於是倒序走訪,因此堆積是“自下而上”構建的。

之所以選擇倒序走訪,是因為這樣能夠保證當前節點之下的子樹已經是合法的子堆積,這樣堆積化當前節點才是有效的。

值得說明的是,由於葉節點沒有子節點,因此它們天然就是合法的子堆積,無須堆積化。如以下程式碼所示,最後一個非葉節點是最後一個節點的父節點,我們從它開始倒序走訪並執行堆積化:

[file]{my_heap}-[class]{max_heap}-[func]{__init__}

複雜度分析

下面,我們來嘗試推算第二種建堆積方法的時間複雜度。

  • 假設完全二元樹的節點數量為 n ,則葉節點數量為 (n + 1) / 2 ,其中 / 為向下整除。因此需要堆積化的節點數量為 (n - 1) / 2
  • 在從頂至底堆積化的過程中,每個節點最多堆積化到葉節點,因此最大迭代次數為二元樹高度 \log n

將上述兩者相乘,可得到建堆積過程的時間複雜度為 O(n \log n)但這個估算結果並不準確,因為我們沒有考慮到二元樹底層節點數量遠多於頂層節點的性質

接下來我們來進行更為準確的計算。為了降低計算難度,假設給定一個節點數量為 n 、高度為 h 的“完美二元樹”,該假設不會影響計算結果的正確性。

完美二元樹的各層節點數量

如上圖所示,節點“從頂至底堆積化”的最大迭代次數等於該節點到葉節點的距離,而該距離正是“節點高度”。因此,我們可以對各層的“節點數量 \times 節點高度”求和,得到所有節點的堆積化迭代次數的總和

$$ T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{(h-1)}\times1

化簡上式需要藉助中學的數列知識,先將 T(h) 乘以 2 ,得到:

$$ \begin{aligned} T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{h-1}\times1 \newline 2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \dots + 2^{h}\times1 \newline \end{aligned}

使用錯位相減法,用下式 2 T(h) 減去上式 T(h) ,可得:

$$ 2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \dots + 2^{h-1} + 2^h

觀察上式,發現 T(h) 是一個等比數列,可直接使用求和公式,得到時間複雜度為:

$$ \begin{aligned} T(h) & = 2 \frac{1 - 2^h}{1 - 2} - h \newline & = 2^{h+1} - h - 2 \newline & = O(2^h) \end{aligned}

進一步,高度為 h 的完美二元樹的節點數量為 n = 2^{h+1} - 1 ,易得複雜度為 O(2^h) = O(n) 。以上推算表明,輸入串列並建堆積的時間複雜度為 O(n) ,非常高效