mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 14:06:29 +08:00
2b1a98fb61
* Use underline format for the technical terms * Bug fixes
89 lines
3.7 KiB
Markdown
Executable file
89 lines
3.7 KiB
Markdown
Executable file
# 二叉树遍历
|
||
|
||
从物理结构的角度来看,树是一种基于链表的数据结构,因此其遍历方式是通过指针逐个访问节点。然而,树是一种非线性数据结构,这使得遍历树比遍历链表更加复杂,需要借助搜索算法来实现。
|
||
|
||
二叉树常见的遍历方式包括层序遍历、前序遍历、中序遍历和后序遍历等。
|
||
|
||
## 层序遍历
|
||
|
||
如下图所示,<u>层序遍历(level-order traversal)</u>从顶部到底部逐层遍历二叉树,并在每一层按照从左到右的顺序访问节点。
|
||
|
||
层序遍历本质上属于<u>广度优先遍历(breadth-first traversal)</u>,也称<u>广度优先搜索(breadth-first search, BFS)</u>,它体现了一种“一圈一圈向外扩展”的逐层遍历方式。
|
||
|
||
![二叉树的层序遍历](binary_tree_traversal.assets/binary_tree_bfs.png)
|
||
|
||
### 代码实现
|
||
|
||
广度优先遍历通常借助“队列”来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进”的规则,两者背后的思想是一致的。实现代码如下:
|
||
|
||
```src
|
||
[file]{binary_tree_bfs}-[class]{}-[func]{level_order}
|
||
```
|
||
|
||
### 复杂度分析
|
||
|
||
- **时间复杂度为 $O(n)$** :所有节点被访问一次,使用 $O(n)$ 时间,其中 $n$ 为节点数量。
|
||
- **空间复杂度为 $O(n)$** :在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 $(n + 1) / 2$ 个节点,占用 $O(n)$ 空间。
|
||
|
||
## 前序、中序、后序遍历
|
||
|
||
相应地,前序、中序和后序遍历都属于<u>深度优先遍历(depth-first traversal)</u>,也称<u>深度优先搜索(depth-first search, DFS)</u>,它体现了一种“先走到尽头,再回溯继续”的遍历方式。
|
||
|
||
下图展示了对二叉树进行深度优先遍历的工作原理。**深度优先遍历就像是绕着整棵二叉树的外围“走”一圈**,在每个节点都会遇到三个位置,分别对应前序遍历、中序遍历和后序遍历。
|
||
|
||
![二叉搜索树的前序、中序、后序遍历](binary_tree_traversal.assets/binary_tree_dfs.png)
|
||
|
||
### 代码实现
|
||
|
||
深度优先搜索通常基于递归实现:
|
||
|
||
```src
|
||
[file]{binary_tree_dfs}-[class]{}-[func]{post_order}
|
||
```
|
||
|
||
!!! tip
|
||
|
||
深度优先搜索也可以基于迭代实现,有兴趣的读者可以自行研究。
|
||
|
||
下图展示了前序遍历二叉树的递归过程,其可分为“递”和“归”两个逆向的部分。
|
||
|
||
1. “递”表示开启新方法,程序在此过程中访问下一个节点。
|
||
2. “归”表示函数返回,代表当前节点已经访问完毕。
|
||
|
||
=== "<1>"
|
||
![前序遍历的递归过程](binary_tree_traversal.assets/preorder_step1.png)
|
||
|
||
=== "<2>"
|
||
![preorder_step2](binary_tree_traversal.assets/preorder_step2.png)
|
||
|
||
=== "<3>"
|
||
![preorder_step3](binary_tree_traversal.assets/preorder_step3.png)
|
||
|
||
=== "<4>"
|
||
![preorder_step4](binary_tree_traversal.assets/preorder_step4.png)
|
||
|
||
=== "<5>"
|
||
![preorder_step5](binary_tree_traversal.assets/preorder_step5.png)
|
||
|
||
=== "<6>"
|
||
![preorder_step6](binary_tree_traversal.assets/preorder_step6.png)
|
||
|
||
=== "<7>"
|
||
![preorder_step7](binary_tree_traversal.assets/preorder_step7.png)
|
||
|
||
=== "<8>"
|
||
![preorder_step8](binary_tree_traversal.assets/preorder_step8.png)
|
||
|
||
=== "<9>"
|
||
![preorder_step9](binary_tree_traversal.assets/preorder_step9.png)
|
||
|
||
=== "<10>"
|
||
![preorder_step10](binary_tree_traversal.assets/preorder_step10.png)
|
||
|
||
=== "<11>"
|
||
![preorder_step11](binary_tree_traversal.assets/preorder_step11.png)
|
||
|
||
### 复杂度分析
|
||
|
||
- **时间复杂度为 $O(n)$** :所有节点被访问一次,使用 $O(n)$ 时间。
|
||
- **空间复杂度为 $O(n)$** :在最差情况下,即树退化为链表时,递归深度达到 $n$ ,系统占用 $O(n)$ 栈帧空间。
|