hello-algo/docs/chapter_sorting/counting_sort.md
2024-04-22 01:45:06 +08:00

40 KiB
Raw Blame History

comments
true

11.9   计数排序

计数排序counting sort通过统计元素数量来实现排序,通常应用于整数数组。

11.9.1   简单实现

先来看一个简单的例子。给定一个长度为 n 的数组 nums ,其中的元素都是“非负整数”,计数排序的整体流程如图 11-16 所示。

  1. 遍历数组,找出其中的最大数字,记为 m ,然后创建一个长度为 m + 1 的辅助数组 counter
  2. 借助 counter 统计 nums 中各数字的出现次数,其中 counter[num] 对应数字 num 的出现次数。统计方法很简单,只需遍历 nums(设当前数字为 num),每轮将 counter[num] 增加 1 即可。
  3. 由于 counter 的各个索引天然有序,因此相当于所有数字已经排序好了。接下来,我们遍历 counter ,根据各数字出现次数从小到大的顺序填入 nums 即可。

计数排序流程{ class="animation-figure" }

图 11-16   计数排序流程

代码如下所示:

=== "Python"

```python title="counting_sort.py"
def counting_sort_naive(nums: list[int]):
    """计数排序"""
    # 简单实现,无法用于排序对象
    # 1. 统计数组最大元素 m
    m = 0
    for num in nums:
        m = max(m, num)
    # 2. 统计各数字的出现次数
    # counter[num] 代表 num 的出现次数
    counter = [0] * (m + 1)
    for num in nums:
        counter[num] += 1
    # 3. 遍历 counter ,将各元素填入原数组 nums
    i = 0
    for num in range(m + 1):
        for _ in range(counter[num]):
            nums[i] = num
            i += 1
```

=== "C++"

```cpp title="counting_sort.cpp"
/* 计数排序 */
// 简单实现,无法用于排序对象
void countingSortNaive(vector<int> &nums) {
    // 1. 统计数组最大元素 m
    int m = 0;
    for (int num : nums) {
        m = max(m, num);
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    vector<int> counter(m + 1, 0);
    for (int num : nums) {
        counter[num]++;
    }
    // 3. 遍历 counter ,将各元素填入原数组 nums
    int i = 0;
    for (int num = 0; num < m + 1; num++) {
        for (int j = 0; j < counter[num]; j++, i++) {
            nums[i] = num;
        }
    }
}
```

=== "Java"

```java title="counting_sort.java"
/* 计数排序 */
// 简单实现,无法用于排序对象
void countingSortNaive(int[] nums) {
    // 1. 统计数组最大元素 m
    int m = 0;
    for (int num : nums) {
        m = Math.max(m, num);
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    int[] counter = new int[m + 1];
    for (int num : nums) {
        counter[num]++;
    }
    // 3. 遍历 counter ,将各元素填入原数组 nums
    int i = 0;
    for (int num = 0; num < m + 1; num++) {
        for (int j = 0; j < counter[num]; j++, i++) {
            nums[i] = num;
        }
    }
}
```

=== "C#"

```csharp title="counting_sort.cs"
/* 计数排序 */
// 简单实现,无法用于排序对象
void CountingSortNaive(int[] nums) {
    // 1. 统计数组最大元素 m
    int m = 0;
    foreach (int num in nums) {
        m = Math.Max(m, num);
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    int[] counter = new int[m + 1];
    foreach (int num in nums) {
        counter[num]++;
    }
    // 3. 遍历 counter ,将各元素填入原数组 nums
    int i = 0;
    for (int num = 0; num < m + 1; num++) {
        for (int j = 0; j < counter[num]; j++, i++) {
            nums[i] = num;
        }
    }
}
```

=== "Go"

```go title="counting_sort.go"
/* 计数排序 */
// 简单实现,无法用于排序对象
func countingSortNaive(nums []int) {
    // 1. 统计数组最大元素 m
    m := 0
    for _, num := range nums {
        if num > m {
            m = num
        }
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    counter := make([]int, m+1)
    for _, num := range nums {
        counter[num]++
    }
    // 3. 遍历 counter ,将各元素填入原数组 nums
    for i, num := 0, 0; num < m+1; num++ {
        for j := 0; j < counter[num]; j++ {
            nums[i] = num
            i++
        }
    }
}
```

=== "Swift"

```swift title="counting_sort.swift"
/* 计数排序 */
// 简单实现,无法用于排序对象
func countingSortNaive(nums: inout [Int]) {
    // 1. 统计数组最大元素 m
    let m = nums.max()!
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    var counter = Array(repeating: 0, count: m + 1)
    for num in nums {
        counter[num] += 1
    }
    // 3. 遍历 counter ,将各元素填入原数组 nums
    var i = 0
    for num in 0 ..< m + 1 {
        for _ in 0 ..< counter[num] {
            nums[i] = num
            i += 1
        }
    }
}
```

=== "JS"

```javascript title="counting_sort.js"
/* 计数排序 */
// 简单实现,无法用于排序对象
function countingSortNaive(nums) {
    // 1. 统计数组最大元素 m
    let m = 0;
    for (const num of nums) {
        m = Math.max(m, num);
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    const counter = new Array(m + 1).fill(0);
    for (const num of nums) {
        counter[num]++;
    }
    // 3. 遍历 counter ,将各元素填入原数组 nums
    let i = 0;
    for (let num = 0; num < m + 1; num++) {
        for (let j = 0; j < counter[num]; j++, i++) {
            nums[i] = num;
        }
    }
}
```

=== "TS"

```typescript title="counting_sort.ts"
/* 计数排序 */
// 简单实现,无法用于排序对象
function countingSortNaive(nums: number[]): void {
    // 1. 统计数组最大元素 m
    let m = 0;
    for (const num of nums) {
        m = Math.max(m, num);
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    const counter: number[] = new Array<number>(m + 1).fill(0);
    for (const num of nums) {
        counter[num]++;
    }
    // 3. 遍历 counter ,将各元素填入原数组 nums
    let i = 0;
    for (let num = 0; num < m + 1; num++) {
        for (let j = 0; j < counter[num]; j++, i++) {
            nums[i] = num;
        }
    }
}
```

=== "Dart"

```dart title="counting_sort.dart"
/* 计数排序 */
// 简单实现,无法用于排序对象
void countingSortNaive(List<int> nums) {
  // 1. 统计数组最大元素 m
  int m = 0;
  for (int _num in nums) {
    m = max(m, _num);
  }
  // 2. 统计各数字的出现次数
  // counter[_num] 代表 _num 的出现次数
  List<int> counter = List.filled(m + 1, 0);
  for (int _num in nums) {
    counter[_num]++;
  }
  // 3. 遍历 counter ,将各元素填入原数组 nums
  int i = 0;
  for (int _num = 0; _num < m + 1; _num++) {
    for (int j = 0; j < counter[_num]; j++, i++) {
      nums[i] = _num;
    }
  }
}
```

=== "Rust"

```rust title="counting_sort.rs"
/* 计数排序 */
// 简单实现,无法用于排序对象
fn counting_sort_naive(nums: &mut [i32]) {
    // 1. 统计数组最大元素 m
    let m = *nums.into_iter().max().unwrap();
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    let mut counter = vec![0; m as usize + 1];
    for &num in &*nums {
        counter[num as usize] += 1;
    }
    // 3. 遍历 counter ,将各元素填入原数组 nums
    let mut i = 0;
    for num in 0..m + 1 {
        for _ in 0..counter[num as usize] {
            nums[i] = num;
            i += 1;
        }
    }
}
```

=== "C"

```c title="counting_sort.c"
/* 计数排序 */
// 简单实现,无法用于排序对象
void countingSortNaive(int nums[], int size) {
    // 1. 统计数组最大元素 m
    int m = 0;
    for (int i = 0; i < size; i++) {
        if (nums[i] > m) {
            m = nums[i];
        }
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    int *counter = calloc(m + 1, sizeof(int));
    for (int i = 0; i < size; i++) {
        counter[nums[i]]++;
    }
    // 3. 遍历 counter ,将各元素填入原数组 nums
    int i = 0;
    for (int num = 0; num < m + 1; num++) {
        for (int j = 0; j < counter[num]; j++, i++) {
            nums[i] = num;
        }
    }
    // 4. 释放内存
    free(counter);
}
```

=== "Kotlin"

```kotlin title="counting_sort.kt"
/* 计数排序 */
// 简单实现,无法用于排序对象
fun countingSortNaive(nums: IntArray) {
    // 1. 统计数组最大元素 m
    var m = 0
    for (num in nums) {
        m = max(m, num)
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    val counter = IntArray(m + 1)
    for (num in nums) {
        counter[num]++
    }
    // 3. 遍历 counter ,将各元素填入原数组 nums
    var i = 0
    for (num in 0..<m + 1) {
        var j = 0
        while (j < counter[num]) {
            nums[i] = num
            j++
            i++
        }
    }
}
```

=== "Ruby"

```ruby title="counting_sort.rb"
[class]{}-[func]{counting_sort_naive}
```

=== "Zig"

```zig title="counting_sort.zig"
[class]{}-[func]{countingSortNaive}
```

??? pythontutor "可视化运行"

<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20counting_sort_naive%28nums%3A%20list%5Bint%5D%29%3A%0A%20%20%20%20%22%22%22%E8%AE%A1%E6%95%B0%E6%8E%92%E5%BA%8F%22%22%22%0A%20%20%20%20%23%20%E7%AE%80%E5%8D%95%E5%AE%9E%E7%8E%B0%EF%BC%8C%E6%97%A0%E6%B3%95%E7%94%A8%E4%BA%8E%E6%8E%92%E5%BA%8F%E5%AF%B9%E8%B1%A1%0A%20%20%20%20%23%201.%20%E7%BB%9F%E8%AE%A1%E6%95%B0%E7%BB%84%E6%9C%80%E5%A4%A7%E5%85%83%E7%B4%A0%20m%0A%20%20%20%20m%20%3D%200%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20m%20%3D%20max%28m,%20num%29%0A%20%20%20%20%23%202.%20%E7%BB%9F%E8%AE%A1%E5%90%84%E6%95%B0%E5%AD%97%E7%9A%84%E5%87%BA%E7%8E%B0%E6%AC%A1%E6%95%B0%0A%20%20%20%20%23%20counter%5Bnum%5D%20%E4%BB%A3%E8%A1%A8%20num%20%E7%9A%84%E5%87%BA%E7%8E%B0%E6%AC%A1%E6%95%B0%0A%20%20%20%20counter%20%3D%20%5B0%5D%20*%20%28m%20%2B%201%29%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20counter%5Bnum%5D%20%2B%3D%201%0A%20%20%20%20%23%203.%20%E9%81%8D%E5%8E%86%20counter%20%EF%BC%8C%E5%B0%86%E5%90%84%E5%85%83%E7%B4%A0%E5%A1%AB%E5%85%A5%E5%8E%9F%E6%95%B0%E7%BB%84%20nums%0A%20%20%20%20i%20%3D%200%0A%20%20%20%20for%20num%20in%20range%28m%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20for%20_%20in%20range%28counter%5Bnum%5D%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20nums%5Bi%5D%20%3D%20num%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%2B%3D%201%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1,%200,%201,%202,%200,%204,%200,%202,%202,%204%5D%0A%20%20%20%20counting_sort_naive%28nums%29%0A%20%20%20%20print%28f%22%E8%AE%A1%E6%95%B0%E6%8E%92%E5%BA%8F%EF%BC%88%E6%97%A0%E6%B3%95%E6%8E%92%E5%BA%8F%E5%AF%B9%E8%B1%A1%EF%BC%89%E5%AE%8C%E6%88%90%E5%90%8E%20nums%20%3D%20%7Bnums%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20counting_sort_naive%28nums%3A%20list%5Bint%5D%29%3A%0A%20%20%20%20%22%22%22%E8%AE%A1%E6%95%B0%E6%8E%92%E5%BA%8F%22%22%22%0A%20%20%20%20%23%20%E7%AE%80%E5%8D%95%E5%AE%9E%E7%8E%B0%EF%BC%8C%E6%97%A0%E6%B3%95%E7%94%A8%E4%BA%8E%E6%8E%92%E5%BA%8F%E5%AF%B9%E8%B1%A1%0A%20%20%20%20%23%201.%20%E7%BB%9F%E8%AE%A1%E6%95%B0%E7%BB%84%E6%9C%80%E5%A4%A7%E5%85%83%E7%B4%A0%20m%0A%20%20%20%20m%20%3D%200%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20m%20%3D%20max%28m,%20num%29%0A%20%20%20%20%23%202.%20%E7%BB%9F%E8%AE%A1%E5%90%84%E6%95%B0%E5%AD%97%E7%9A%84%E5%87%BA%E7%8E%B0%E6%AC%A1%E6%95%B0%0A%20%20%20%20%23%20counter%5Bnum%5D%20%E4%BB%A3%E8%A1%A8%20num%20%E7%9A%84%E5%87%BA%E7%8E%B0%E6%AC%A1%E6%95%B0%0A%20%20%20%20counter%20%3D%20%5B0%5D%20*%20%28m%20%2B%201%29%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20counter%5Bnum%5D%20%2B%3D%201%0A%20%20%20%20%23%203.%20%E9%81%8D%E5%8E%86%20counter%20%EF%BC%8C%E5%B0%86%E5%90%84%E5%85%83%E7%B4%A0%E5%A1%AB%E5%85%A5%E5%8E%9F%E6%95%B0%E7%BB%84%20nums%0A%20%20%20%20i%20%3D%200%0A%20%20%20%20for%20num%20in%20range%28m%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20for%20_%20in%20range%28counter%5Bnum%5D%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20nums%5Bi%5D%20%3D%20num%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%2B%3D%201%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1,%200,%201,%202,%200,%204,%200,%202,%202,%204%5D%0A%20%20%20%20counting_sort_naive%28nums%29%0A%20%20%20%20print%28f%22%E8%AE%A1%E6%95%B0%E6%8E%92%E5%BA%8F%EF%BC%88%E6%97%A0%E6%B3%95%E6%8E%92%E5%BA%8F%E5%AF%B9%E8%B1%A1%EF%BC%89%E5%AE%8C%E6%88%90%E5%90%8E%20nums%20%3D%20%7Bnums%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全屏观看 ></a></div>

!!! note "计数排序与桶排序的联系"

从桶排序的角度看,我们可以将计数排序中的计数数组 `counter` 的每个索引视为一个桶,将统计数量的过程看作将各个元素分配到对应的桶中。本质上,计数排序是桶排序在整型数据下的一个特例。

11.9.2   完整实现

细心的读者可能发现了,如果输入数据是对象,上述步骤 3. 就失效了。假设输入数据是商品对象,我们想按照商品价格(类的成员变量)对商品进行排序,而上述算法只能给出价格的排序结果。

那么如何才能得到原数据的排序结果呢?我们首先计算 counter 的“前缀和”。顾名思义,索引 i 处的前缀和 prefix[i] 等于数组前 i 个元素之和:

$$ \text{prefix}[i] = \sum_{j=0}^i \text{counter[j]}

前缀和具有明确的意义,prefix[num] - 1 代表元素 num 在结果数组 res 中最后一次出现的索引。这个信息非常关键,因为它告诉我们各个元素应该出现在结果数组的哪个位置。接下来,我们倒序遍历原数组 nums 的每个元素 num ,在每轮迭代中执行以下两步。

  1. num 填入数组 res 的索引 prefix[num] - 1 处。
  2. 令前缀和 prefix[num] 减小 1 ,从而得到下次放置 num 的索引。

遍历完成后,数组 res 中就是排序好的结果,最后使用 res 覆盖原数组 nums 即可。图 11-17 展示了完整的计数排序流程。

=== "<1>" 计数排序步骤{ class="animation-figure" }

=== "<2>" counting_sort_step2{ class="animation-figure" }

=== "<3>" counting_sort_step3{ class="animation-figure" }

=== "<4>" counting_sort_step4{ class="animation-figure" }

=== "<5>" counting_sort_step5{ class="animation-figure" }

=== "<6>" counting_sort_step6{ class="animation-figure" }

=== "<7>" counting_sort_step7{ class="animation-figure" }

=== "<8>" counting_sort_step8{ class="animation-figure" }

图 11-17   计数排序步骤

计数排序的实现代码如下所示:

=== "Python"

```python title="counting_sort.py"
def counting_sort(nums: list[int]):
    """计数排序"""
    # 完整实现,可排序对象,并且是稳定排序
    # 1. 统计数组最大元素 m
    m = max(nums)
    # 2. 统计各数字的出现次数
    # counter[num] 代表 num 的出现次数
    counter = [0] * (m + 1)
    for num in nums:
        counter[num] += 1
    # 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
    # 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
    for i in range(m):
        counter[i + 1] += counter[i]
    # 4. 倒序遍历 nums ,将各元素填入结果数组 res
    # 初始化数组 res 用于记录结果
    n = len(nums)
    res = [0] * n
    for i in range(n - 1, -1, -1):
        num = nums[i]
        res[counter[num] - 1] = num  # 将 num 放置到对应索引处
        counter[num] -= 1  # 令前缀和自减 1 ,得到下次放置 num 的索引
    # 使用结果数组 res 覆盖原数组 nums
    for i in range(n):
        nums[i] = res[i]
```

=== "C++"

```cpp title="counting_sort.cpp"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
void countingSort(vector<int> &nums) {
    // 1. 统计数组最大元素 m
    int m = 0;
    for (int num : nums) {
        m = max(m, num);
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    vector<int> counter(m + 1, 0);
    for (int num : nums) {
        counter[num]++;
    }
    // 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
    // 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
    for (int i = 0; i < m; i++) {
        counter[i + 1] += counter[i];
    }
    // 4. 倒序遍历 nums ,将各元素填入结果数组 res
    // 初始化数组 res 用于记录结果
    int n = nums.size();
    vector<int> res(n);
    for (int i = n - 1; i >= 0; i--) {
        int num = nums[i];
        res[counter[num] - 1] = num; // 将 num 放置到对应索引处
        counter[num]--;              // 令前缀和自减 1 ,得到下次放置 num 的索引
    }
    // 使用结果数组 res 覆盖原数组 nums
    nums = res;
}
```

=== "Java"

```java title="counting_sort.java"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
void countingSort(int[] nums) {
    // 1. 统计数组最大元素 m
    int m = 0;
    for (int num : nums) {
        m = Math.max(m, num);
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    int[] counter = new int[m + 1];
    for (int num : nums) {
        counter[num]++;
    }
    // 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
    // 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
    for (int i = 0; i < m; i++) {
        counter[i + 1] += counter[i];
    }
    // 4. 倒序遍历 nums ,将各元素填入结果数组 res
    // 初始化数组 res 用于记录结果
    int n = nums.length;
    int[] res = new int[n];
    for (int i = n - 1; i >= 0; i--) {
        int num = nums[i];
        res[counter[num] - 1] = num; // 将 num 放置到对应索引处
        counter[num]--; // 令前缀和自减 1 ,得到下次放置 num 的索引
    }
    // 使用结果数组 res 覆盖原数组 nums
    for (int i = 0; i < n; i++) {
        nums[i] = res[i];
    }
}
```

=== "C#"

```csharp title="counting_sort.cs"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
void CountingSort(int[] nums) {
    // 1. 统计数组最大元素 m
    int m = 0;
    foreach (int num in nums) {
        m = Math.Max(m, num);
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    int[] counter = new int[m + 1];
    foreach (int num in nums) {
        counter[num]++;
    }
    // 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
    // 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
    for (int i = 0; i < m; i++) {
        counter[i + 1] += counter[i];
    }
    // 4. 倒序遍历 nums ,将各元素填入结果数组 res
    // 初始化数组 res 用于记录结果
    int n = nums.Length;
    int[] res = new int[n];
    for (int i = n - 1; i >= 0; i--) {
        int num = nums[i];
        res[counter[num] - 1] = num; // 将 num 放置到对应索引处
        counter[num]--; // 令前缀和自减 1 ,得到下次放置 num 的索引
    }
    // 使用结果数组 res 覆盖原数组 nums
    for (int i = 0; i < n; i++) {
        nums[i] = res[i];
    }
}
```

=== "Go"

```go title="counting_sort.go"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
func countingSort(nums []int) {
    // 1. 统计数组最大元素 m
    m := 0
    for _, num := range nums {
        if num > m {
            m = num
        }
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    counter := make([]int, m+1)
    for _, num := range nums {
        counter[num]++
    }
    // 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
    // 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
    for i := 0; i < m; i++ {
        counter[i+1] += counter[i]
    }
    // 4. 倒序遍历 nums ,将各元素填入结果数组 res
    // 初始化数组 res 用于记录结果
    n := len(nums)
    res := make([]int, n)
    for i := n - 1; i >= 0; i-- {
        num := nums[i]
        // 将 num 放置到对应索引处
        res[counter[num]-1] = num
        // 令前缀和自减 1 ,得到下次放置 num 的索引
        counter[num]--
    }
    // 使用结果数组 res 覆盖原数组 nums
    copy(nums, res)
}
```

=== "Swift"

```swift title="counting_sort.swift"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
func countingSort(nums: inout [Int]) {
    // 1. 统计数组最大元素 m
    let m = nums.max()!
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    var counter = Array(repeating: 0, count: m + 1)
    for num in nums {
        counter[num] += 1
    }
    // 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
    // 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
    for i in 0 ..< m {
        counter[i + 1] += counter[i]
    }
    // 4. 倒序遍历 nums ,将各元素填入结果数组 res
    // 初始化数组 res 用于记录结果
    var res = Array(repeating: 0, count: nums.count)
    for i in nums.indices.reversed() {
        let num = nums[i]
        res[counter[num] - 1] = num // 将 num 放置到对应索引处
        counter[num] -= 1 // 令前缀和自减 1 ,得到下次放置 num 的索引
    }
    // 使用结果数组 res 覆盖原数组 nums
    for i in nums.indices {
        nums[i] = res[i]
    }
}
```

=== "JS"

```javascript title="counting_sort.js"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
function countingSort(nums) {
    // 1. 统计数组最大元素 m
    let m = 0;
    for (const num of nums) {
        m = Math.max(m, num);
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    const counter = new Array(m + 1).fill(0);
    for (const num of nums) {
        counter[num]++;
    }
    // 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
    // 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
    for (let i = 0; i < m; i++) {
        counter[i + 1] += counter[i];
    }
    // 4. 倒序遍历 nums ,将各元素填入结果数组 res
    // 初始化数组 res 用于记录结果
    const n = nums.length;
    const res = new Array(n);
    for (let i = n - 1; i >= 0; i--) {
        const num = nums[i];
        res[counter[num] - 1] = num; // 将 num 放置到对应索引处
        counter[num]--; // 令前缀和自减 1 ,得到下次放置 num 的索引
    }
    // 使用结果数组 res 覆盖原数组 nums
    for (let i = 0; i < n; i++) {
        nums[i] = res[i];
    }
}
```

=== "TS"

```typescript title="counting_sort.ts"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
function countingSort(nums: number[]): void {
    // 1. 统计数组最大元素 m
    let m = 0;
    for (const num of nums) {
        m = Math.max(m, num);
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    const counter: number[] = new Array<number>(m + 1).fill(0);
    for (const num of nums) {
        counter[num]++;
    }
    // 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
    // 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
    for (let i = 0; i < m; i++) {
        counter[i + 1] += counter[i];
    }
    // 4. 倒序遍历 nums ,将各元素填入结果数组 res
    // 初始化数组 res 用于记录结果
    const n = nums.length;
    const res: number[] = new Array<number>(n);
    for (let i = n - 1; i >= 0; i--) {
        const num = nums[i];
        res[counter[num] - 1] = num; // 将 num 放置到对应索引处
        counter[num]--; // 令前缀和自减 1 ,得到下次放置 num 的索引
    }
    // 使用结果数组 res 覆盖原数组 nums
    for (let i = 0; i < n; i++) {
        nums[i] = res[i];
    }
}
```

=== "Dart"

```dart title="counting_sort.dart"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
void countingSort(List<int> nums) {
  // 1. 统计数组最大元素 m
  int m = 0;
  for (int _num in nums) {
    m = max(m, _num);
  }
  // 2. 统计各数字的出现次数
  // counter[_num] 代表 _num 的出现次数
  List<int> counter = List.filled(m + 1, 0);
  for (int _num in nums) {
    counter[_num]++;
  }
  // 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
  // 即 counter[_num]-1 是 _num 在 res 中最后一次出现的索引
  for (int i = 0; i < m; i++) {
    counter[i + 1] += counter[i];
  }
  // 4. 倒序遍历 nums ,将各元素填入结果数组 res
  // 初始化数组 res 用于记录结果
  int n = nums.length;
  List<int> res = List.filled(n, 0);
  for (int i = n - 1; i >= 0; i--) {
    int _num = nums[i];
    res[counter[_num] - 1] = _num; // 将 _num 放置到对应索引处
    counter[_num]--; // 令前缀和自减 1 ,得到下次放置 _num 的索引
  }
  // 使用结果数组 res 覆盖原数组 nums
  nums.setAll(0, res);
}
```

=== "Rust"

```rust title="counting_sort.rs"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
fn counting_sort(nums: &mut [i32]) {
    // 1. 统计数组最大元素 m
    let m = *nums.into_iter().max().unwrap();
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    let mut counter = vec![0; m as usize + 1];
    for &num in &*nums {
        counter[num as usize] += 1;
    }
    // 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
    // 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
    for i in 0..m as usize {
        counter[i + 1] += counter[i];
    }
    // 4. 倒序遍历 nums ,将各元素填入结果数组 res
    // 初始化数组 res 用于记录结果
    let n = nums.len();
    let mut res = vec![0; n];
    for i in (0..n).rev() {
        let num = nums[i];
        res[counter[num as usize] - 1] = num; // 将 num 放置到对应索引处
        counter[num as usize] -= 1; // 令前缀和自减 1 ,得到下次放置 num 的索引
    }
    // 使用结果数组 res 覆盖原数组 nums
    for i in 0..n {
        nums[i] = res[i];
    }
}
```

=== "C"

```c title="counting_sort.c"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
void countingSort(int nums[], int size) {
    // 1. 统计数组最大元素 m
    int m = 0;
    for (int i = 0; i < size; i++) {
        if (nums[i] > m) {
            m = nums[i];
        }
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    int *counter = calloc(m, sizeof(int));
    for (int i = 0; i < size; i++) {
        counter[nums[i]]++;
    }
    // 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
    // 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
    for (int i = 0; i < m; i++) {
        counter[i + 1] += counter[i];
    }
    // 4. 倒序遍历 nums ,将各元素填入结果数组 res
    // 初始化数组 res 用于记录结果
    int *res = malloc(sizeof(int) * size);
    for (int i = size - 1; i >= 0; i--) {
        int num = nums[i];
        res[counter[num] - 1] = num; // 将 num 放置到对应索引处
        counter[num]--;              // 令前缀和自减 1 ,得到下次放置 num 的索引
    }
    // 使用结果数组 res 覆盖原数组 nums
    memcpy(nums, res, size * sizeof(int));
    // 5. 释放内存
    free(counter);
}
```

=== "Kotlin"

```kotlin title="counting_sort.kt"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
fun countingSort(nums: IntArray) {
    // 1. 统计数组最大元素 m
    var m = 0
    for (num in nums) {
        m = max(m, num)
    }
    // 2. 统计各数字的出现次数
    // counter[num] 代表 num 的出现次数
    val counter = IntArray(m + 1)
    for (num in nums) {
        counter[num]++
    }
    // 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
    // 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
    for (i in 0..<m) {
        counter[i + 1] += counter[i]
    }
    // 4. 倒序遍历 nums ,将各元素填入结果数组 res
    // 初始化数组 res 用于记录结果
    val n = nums.size
    val res = IntArray(n)
    for (i in n - 1 downTo 0) {
        val num = nums[i]
        res[counter[num] - 1] = num // 将 num 放置到对应索引处
        counter[num]-- // 令前缀和自减 1 ,得到下次放置 num 的索引
    }
    // 使用结果数组 res 覆盖原数组 nums
    for (i in 0..<n) {
        nums[i] = res[i]
    }
}
```

=== "Ruby"

```ruby title="counting_sort.rb"
[class]{}-[func]{counting_sort}
```

=== "Zig"

```zig title="counting_sort.zig"
[class]{}-[func]{countingSort}
```

??? pythontutor "可视化运行"

<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20counting_sort%28nums%3A%20list%5Bint%5D%29%3A%0A%20%20%20%20%22%22%22%E8%AE%A1%E6%95%B0%E6%8E%92%E5%BA%8F%22%22%22%0A%20%20%20%20%23%20%E5%AE%8C%E6%95%B4%E5%AE%9E%E7%8E%B0%EF%BC%8C%E5%8F%AF%E6%8E%92%E5%BA%8F%E5%AF%B9%E8%B1%A1%EF%BC%8C%E5%B9%B6%E4%B8%94%E6%98%AF%E7%A8%B3%E5%AE%9A%E6%8E%92%E5%BA%8F%0A%20%20%20%20%23%201.%20%E7%BB%9F%E8%AE%A1%E6%95%B0%E7%BB%84%E6%9C%80%E5%A4%A7%E5%85%83%E7%B4%A0%20m%0A%20%20%20%20m%20%3D%20max%28nums%29%0A%20%20%20%20%23%202.%20%E7%BB%9F%E8%AE%A1%E5%90%84%E6%95%B0%E5%AD%97%E7%9A%84%E5%87%BA%E7%8E%B0%E6%AC%A1%E6%95%B0%0A%20%20%20%20%23%20counter%5Bnum%5D%20%E4%BB%A3%E8%A1%A8%20num%20%E7%9A%84%E5%87%BA%E7%8E%B0%E6%AC%A1%E6%95%B0%0A%20%20%20%20counter%20%3D%20%5B0%5D%20*%20%28m%20%2B%201%29%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20counter%5Bnum%5D%20%2B%3D%201%0A%20%20%20%20%23%203.%20%E6%B1%82%20counter%20%E7%9A%84%E5%89%8D%E7%BC%80%E5%92%8C%EF%BC%8C%E5%B0%86%E2%80%9C%E5%87%BA%E7%8E%B0%E6%AC%A1%E6%95%B0%E2%80%9D%E8%BD%AC%E6%8D%A2%E4%B8%BA%E2%80%9C%E5%B0%BE%E7%B4%A2%E5%BC%95%E2%80%9D%0A%20%20%20%20%23%20%E5%8D%B3%20counter%5Bnum%5D-1%20%E6%98%AF%20num%20%E5%9C%A8%20res%20%E4%B8%AD%E6%9C%80%E5%90%8E%E4%B8%80%E6%AC%A1%E5%87%BA%E7%8E%B0%E7%9A%84%E7%B4%A2%E5%BC%95%0A%20%20%20%20for%20i%20in%20range%28m%29%3A%0A%20%20%20%20%20%20%20%20counter%5Bi%20%2B%201%5D%20%2B%3D%20counter%5Bi%5D%0A%20%20%20%20%23%204.%20%E5%80%92%E5%BA%8F%E9%81%8D%E5%8E%86%20nums%20%EF%BC%8C%E5%B0%86%E5%90%84%E5%85%83%E7%B4%A0%E5%A1%AB%E5%85%A5%E7%BB%93%E6%9E%9C%E6%95%B0%E7%BB%84%20res%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E6%95%B0%E7%BB%84%20res%20%E7%94%A8%E4%BA%8E%E8%AE%B0%E5%BD%95%E7%BB%93%E6%9E%9C%0A%20%20%20%20n%20%3D%20len%28nums%29%0A%20%20%20%20res%20%3D%20%5B0%5D%20*%20n%0A%20%20%20%20for%20i%20in%20range%28n%20-%201,%20-1,%20-1%29%3A%0A%20%20%20%20%20%20%20%20num%20%3D%20nums%5Bi%5D%0A%20%20%20%20%20%20%20%20res%5Bcounter%5Bnum%5D%20-%201%5D%20%3D%20num%20%20%23%20%E5%B0%86%20num%20%E6%94%BE%E7%BD%AE%E5%88%B0%E5%AF%B9%E5%BA%94%E7%B4%A2%E5%BC%95%E5%A4%84%0A%20%20%20%20%20%20%20%20counter%5Bnum%5D%20-%3D%201%20%20%23%20%E4%BB%A4%E5%89%8D%E7%BC%80%E5%92%8C%E8%87%AA%E5%87%8F%201%20%EF%BC%8C%E5%BE%97%E5%88%B0%E4%B8%8B%E6%AC%A1%E6%94%BE%E7%BD%AE%20num%20%E7%9A%84%E7%B4%A2%E5%BC%95%0A%20%20%20%20%23%20%E4%BD%BF%E7%94%A8%E7%BB%93%E6%9E%9C%E6%95%B0%E7%BB%84%20res%20%E8%A6%86%E7%9B%96%E5%8E%9F%E6%95%B0%E7%BB%84%20nums%0A%20%20%20%20for%20i%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20nums%5Bi%5D%20%3D%20res%5Bi%5D%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1,%200,%201,%202,%200,%204,%200,%202,%202,%204%5D%0A%20%20%20%20counting_sort%28nums%29%0A%20%20%20%20print%28f%22%E8%AE%A1%E6%95%B0%E6%8E%92%E5%BA%8F%E5%AE%8C%E6%88%90%E5%90%8E%20nums%20%3D%20%7Bnums%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20counting_sort%28nums%3A%20list%5Bint%5D%29%3A%0A%20%20%20%20%22%22%22%E8%AE%A1%E6%95%B0%E6%8E%92%E5%BA%8F%22%22%22%0A%20%20%20%20%23%20%E5%AE%8C%E6%95%B4%E5%AE%9E%E7%8E%B0%EF%BC%8C%E5%8F%AF%E6%8E%92%E5%BA%8F%E5%AF%B9%E8%B1%A1%EF%BC%8C%E5%B9%B6%E4%B8%94%E6%98%AF%E7%A8%B3%E5%AE%9A%E6%8E%92%E5%BA%8F%0A%20%20%20%20%23%201.%20%E7%BB%9F%E8%AE%A1%E6%95%B0%E7%BB%84%E6%9C%80%E5%A4%A7%E5%85%83%E7%B4%A0%20m%0A%20%20%20%20m%20%3D%20max%28nums%29%0A%20%20%20%20%23%202.%20%E7%BB%9F%E8%AE%A1%E5%90%84%E6%95%B0%E5%AD%97%E7%9A%84%E5%87%BA%E7%8E%B0%E6%AC%A1%E6%95%B0%0A%20%20%20%20%23%20counter%5Bnum%5D%20%E4%BB%A3%E8%A1%A8%20num%20%E7%9A%84%E5%87%BA%E7%8E%B0%E6%AC%A1%E6%95%B0%0A%20%20%20%20counter%20%3D%20%5B0%5D%20*%20%28m%20%2B%201%29%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20counter%5Bnum%5D%20%2B%3D%201%0A%20%20%20%20%23%203.%20%E6%B1%82%20counter%20%E7%9A%84%E5%89%8D%E7%BC%80%E5%92%8C%EF%BC%8C%E5%B0%86%E2%80%9C%E5%87%BA%E7%8E%B0%E6%AC%A1%E6%95%B0%E2%80%9D%E8%BD%AC%E6%8D%A2%E4%B8%BA%E2%80%9C%E5%B0%BE%E7%B4%A2%E5%BC%95%E2%80%9D%0A%20%20%20%20%23%20%E5%8D%B3%20counter%5Bnum%5D-1%20%E6%98%AF%20num%20%E5%9C%A8%20res%20%E4%B8%AD%E6%9C%80%E5%90%8E%E4%B8%80%E6%AC%A1%E5%87%BA%E7%8E%B0%E7%9A%84%E7%B4%A2%E5%BC%95%0A%20%20%20%20for%20i%20in%20range%28m%29%3A%0A%20%20%20%20%20%20%20%20counter%5Bi%20%2B%201%5D%20%2B%3D%20counter%5Bi%5D%0A%20%20%20%20%23%204.%20%E5%80%92%E5%BA%8F%E9%81%8D%E5%8E%86%20nums%20%EF%BC%8C%E5%B0%86%E5%90%84%E5%85%83%E7%B4%A0%E5%A1%AB%E5%85%A5%E7%BB%93%E6%9E%9C%E6%95%B0%E7%BB%84%20res%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E6%95%B0%E7%BB%84%20res%20%E7%94%A8%E4%BA%8E%E8%AE%B0%E5%BD%95%E7%BB%93%E6%9E%9C%0A%20%20%20%20n%20%3D%20len%28nums%29%0A%20%20%20%20res%20%3D%20%5B0%5D%20*%20n%0A%20%20%20%20for%20i%20in%20range%28n%20-%201,%20-1,%20-1%29%3A%0A%20%20%20%20%20%20%20%20num%20%3D%20nums%5Bi%5D%0A%20%20%20%20%20%20%20%20res%5Bcounter%5Bnum%5D%20-%201%5D%20%3D%20num%20%20%23%20%E5%B0%86%20num%20%E6%94%BE%E7%BD%AE%E5%88%B0%E5%AF%B9%E5%BA%94%E7%B4%A2%E5%BC%95%E5%A4%84%0A%20%20%20%20%20%20%20%20counter%5Bnum%5D%20-%3D%201%20%20%23%20%E4%BB%A4%E5%89%8D%E7%BC%80%E5%92%8C%E8%87%AA%E5%87%8F%201%20%EF%BC%8C%E5%BE%97%E5%88%B0%E4%B8%8B%E6%AC%A1%E6%94%BE%E7%BD%AE%20num%20%E7%9A%84%E7%B4%A2%E5%BC%95%0A%20%20%20%20%23%20%E4%BD%BF%E7%94%A8%E7%BB%93%E6%9E%9C%E6%95%B0%E7%BB%84%20res%20%E8%A6%86%E7%9B%96%E5%8E%9F%E6%95%B0%E7%BB%84%20nums%0A%20%20%20%20for%20i%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20nums%5Bi%5D%20%3D%20res%5Bi%5D%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1,%200,%201,%202,%200,%204,%200,%202,%202,%204%5D%0A%20%20%20%20counting_sort%28nums%29%0A%20%20%20%20print%28f%22%E8%AE%A1%E6%95%B0%E6%8E%92%E5%BA%8F%E5%AE%8C%E6%88%90%E5%90%8E%20nums%20%3D%20%7Bnums%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全屏观看 ></a></div>

11.9.3   算法特性

  • 时间复杂度为 $O(n + m)$、非自适应排序 :涉及遍历 nums 和遍历 counter ,都使用线性时间。一般情况下 n \gg m ,时间复杂度趋于 O(n)
  • 空间复杂度为 $O(n + m)$、非原地排序:借助了长度分别为 nm 的数组 rescounter
  • 稳定排序:由于向 res 中填充元素的顺序是“从右向左”的,因此倒序遍历 nums 可以避免改变相等元素之间的相对位置,从而实现稳定排序。实际上,正序遍历 nums 也可以得到正确的排序结果,但结果是非稳定的。

11.9.4   局限性

看到这里,你也许会觉得计数排序非常巧妙,仅通过统计数量就可以实现高效的排序。然而,使用计数排序的前置条件相对较为严格。

计数排序只适用于非负整数。若想将其用于其他类型的数据,需要确保这些数据可以转换为非负整数,并且在转换过程中不能改变各个元素之间的相对大小关系。例如,对于包含负数的整数数组,可以先给所有数字加上一个常数,将全部数字转化为正数,排序完成后再转换回去。

计数排序适用于数据量大但数据范围较小的情况。比如,在上述示例中 m 不能太大,否则会占用过多空间。而当 n \ll m 时,计数排序使用 O(m) 时间,可能比 O(n \log n) 的排序算法还要慢。