hello-algo/docs/chapter_tree/binary_tree_traversal.md
krahets 6dc21691ed Add build scripts for C# and
unify the coding style.
2023-02-08 22:18:02 +08:00

6 KiB
Executable file
Raw Blame History

comments
true

7.2. 二叉树遍历

非线性数据结构的遍历操作比线性数据结构更加复杂,往往需要使用搜索算法来实现。常见的二叉树遍历方式有层序遍历、前序遍历、中序遍历、后序遍历。

7.2.1. 层序遍历

「层序遍历 Hierarchical-Order Traversal」从顶至底、一层一层地遍历二叉树并在每层中按照从左到右的顺序访问结点。

层序遍历本质上是「广度优先搜索 Breadth-First Traversal」其体现着一种“一圈一圈向外”的层进遍历方式。

binary_tree_bfs

Fig. 二叉树的层序遍历

广度优先遍历一般借助「队列」来实现。队列的规则是“先进先出”,广度优先遍历的规则是 ”一层层平推“ ,两者背后的思想是一致的。

=== "Java"

```java title="binary_tree_bfs.java"
[class]{binary_tree_bfs}-[func]{hierOrder}
```

=== "C++"

```cpp title="binary_tree_bfs.cpp"
[class]{}-[func]{hierOrder}
```

=== "Python"

```python title="binary_tree_bfs.py"
[class]{}-[func]{hier_order}
```

=== "Go"

```go title="binary_tree_bfs.go"
/* 层序遍历 */
func levelOrder(root *TreeNode) []int {
    // 初始化队列,加入根结点
    queue := list.New()
    queue.PushBack(root)
    // 初始化一个切片,用于保存遍历序列
    nums := make([]int, 0)
    for queue.Len() > 0 {
        // poll
        node := queue.Remove(queue.Front()).(*TreeNode)
        // 保存结点值
        nums = append(nums, node.Val)
        if node.Left != nil {
            // 左子结点入队
            queue.PushBack(node.Left)
        }
        if node.Right != nil {
            // 右子结点入队
            queue.PushBack(node.Right)
        }
    }
    return nums
}
```

=== "JavaScript"

```javascript title="binary_tree_bfs.js"
[class]{}-[func]{hierOrder}
```

=== "TypeScript"

```typescript title="binary_tree_bfs.ts"
[class]{}-[func]{hierOrder}
```

=== "C"

```c title="binary_tree_bfs.c"

```

=== "C#"

```csharp title="binary_tree_bfs.cs"
[class]{binary_tree_bfs}-[func]{hierOrder}
```

=== "Swift"

```swift title="binary_tree_bfs.swift"
[class]{}-[func]{hierOrder}
```

=== "Zig"

```zig title="binary_tree_bfs.zig"

```

7.2.2. 前序、中序、后序遍历

相对地,前、中、后序遍历皆属于「深度优先遍历 Depth-First Traversal」其体现着一种“先走到尽头再回头继续”的回溯遍历方式。

如下图所示,左侧是深度优先遍历的的示意图,右上方是对应的递归实现代码。深度优先遍历就像是绕着整个二叉树的外围“走”一圈,走的过程中,在每个结点都会遇到三个位置,分别对应前序遍历、中序遍历、后序遍历。

binary_tree_dfs

Fig. 二叉树的前 / 中 / 后序遍历

位置 含义 此处访问结点时对应
橙色圆圈处 刚进入此结点,即将访问该结点的左子树 前序遍历 Pre-Order Traversal
蓝色圆圈处 已访问完左子树,即将访问右子树 中序遍历 In-Order Traversal
紫色圆圈处 已访问完左子树和右子树,即将返回 后序遍历 Post-Order Traversal

=== "Java"

```java title="binary_tree_dfs.java"
[class]{binary_tree_dfs}-[func]{preOrder}

[class]{binary_tree_dfs}-[func]{inOrder}

[class]{binary_tree_dfs}-[func]{postOrder}
```

=== "C++"

```cpp title="binary_tree_dfs.cpp"
[class]{}-[func]{preOrder}

[class]{}-[func]{inOrder}

[class]{}-[func]{postOrder}
```

=== "Python"

```python title="binary_tree_dfs.py"
[class]{}-[func]{pre_order}

[class]{}-[func]{in_order}

[class]{}-[func]{post_order}
```

=== "Go"

```go title="binary_tree_dfs.go"
/* 前序遍历 */
func preOrder(node *TreeNode) {
    if node == nil {
        return
    }
    // 访问优先级:根结点 -> 左子树 -> 右子树
    nums = append(nums, node.Val)
    preOrder(node.Left)
    preOrder(node.Right)
}

/* 中序遍历 */
func inOrder(node *TreeNode) {
    if node == nil {
        return
    }
    // 访问优先级:左子树 -> 根结点 -> 右子树
    inOrder(node.Left)
    nums = append(nums, node.Val)
    inOrder(node.Right)
}

/* 后序遍历 */
func postOrder(node *TreeNode) {
    if node == nil {
        return
    }
    // 访问优先级:左子树 -> 右子树 -> 根结点
    postOrder(node.Left)
    postOrder(node.Right)
    nums = append(nums, node.Val)
}
```

=== "JavaScript"

```javascript title="binary_tree_dfs.js"
[class]{}-[func]{preOrder}

[class]{}-[func]{inOrder}

[class]{}-[func]{postOrder}
```

=== "TypeScript"

```typescript title="binary_tree_dfs.ts"
[class]{}-[func]{preOrder}

[class]{}-[func]{inOrder}

[class]{}-[func]{postOrder}
```

=== "C"

```c title="binary_tree_dfs.c"

```

=== "C#"

```csharp title="binary_tree_dfs.cs"
[class]{binary_tree_dfs}-[func]{preOrder}

[class]{binary_tree_dfs}-[func]{inOrder}

[class]{binary_tree_dfs}-[func]{postOrder}
```

=== "Swift"

```swift title="binary_tree_dfs.swift"
[class]{}-[func]{preOrder}

[class]{}-[func]{inOrder}

[class]{}-[func]{postOrder}
```

=== "Zig"

```zig title="binary_tree_dfs.zig"

```

!!! note

使用循环一样可以实现前、中、后序遍历,但代码相对繁琐,有兴趣的同学可以自行实现。