hello-algo/chapter_heap/top_k.md
2023-07-26 08:58:52 +08:00

215 lines
6.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
comments: true
---
# 8.3.   Top-K 问题
!!! question
给定一个长度为 $n$ 无序数组 `nums` ,请返回数组中前 $k$ 大的元素。
对于该问题,我们先介绍两种思路比较直接的解法,再介绍效率更高的堆解法。
## 8.3.1.   方法一:遍历选择
我们可以进行 $k$ 轮遍历,分别在每轮中提取第 $1$ , $2$ , $\cdots$ , $k$ 大的元素,时间复杂度为 $O(nk)$ 。
该方法只适用于 $k \ll n$ 的情况,因为当 $k$ 与 $n$ 比较接近时,其时间复杂度趋向于 $O(n^2)$ ,非常耗时。
![遍历寻找最大的 k 个元素](top_k.assets/top_k_traversal.png)
<p align="center"> Fig. 遍历寻找最大的 k 个元素 </p>
!!! tip
当 $k = n$ 时,我们可以得到从大到小的序列,等价于「选择排序」算法。
## 8.3.2. &nbsp; 方法二:排序
我们可以对数组 `nums` 进行排序,并返回最右边的 $k$ 个元素,时间复杂度为 $O(n \log n)$ 。
显然,该方法“超额”完成任务了,因为我们只需要找出最大的 $k$ 个元素即可,而不需要排序其他元素。
![排序寻找最大的 k 个元素](top_k.assets/top_k_sorting.png)
<p align="center"> Fig. 排序寻找最大的 k 个元素 </p>
## 8.3.3. &nbsp; 方法三:堆
我们可以基于堆更加高效地解决 Top-K 问题,流程如下:
1. 初始化一个小顶堆,其堆顶元素最小。
2. 先将数组的前 $k$ 个元素依次入堆。
3. 从第 $k + 1$ 个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆。
4. 遍历完成后,堆中保存的就是最大的 $k$ 个元素。
=== "<1>"
![基于堆寻找最大的 k 个元素](top_k.assets/top_k_heap_step1.png)
=== "<2>"
![top_k_heap_step2](top_k.assets/top_k_heap_step2.png)
=== "<3>"
![top_k_heap_step3](top_k.assets/top_k_heap_step3.png)
=== "<4>"
![top_k_heap_step4](top_k.assets/top_k_heap_step4.png)
=== "<5>"
![top_k_heap_step5](top_k.assets/top_k_heap_step5.png)
=== "<6>"
![top_k_heap_step6](top_k.assets/top_k_heap_step6.png)
=== "<7>"
![top_k_heap_step7](top_k.assets/top_k_heap_step7.png)
=== "<8>"
![top_k_heap_step8](top_k.assets/top_k_heap_step8.png)
=== "<9>"
![top_k_heap_step9](top_k.assets/top_k_heap_step9.png)
总共执行了 $n$ 轮入堆和出堆,堆的最大长度为 $k$ ,因此时间复杂度为 $O(n \log k)$ 。该方法的效率很高,当 $k$ 较小时,时间复杂度趋向 $O(n)$ ;当 $k$ 较大时,时间复杂度不会超过 $O(n \log n)$ 。
另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大 $k$ 个元素的动态更新。
=== "Java"
```java title="top_k.java"
/* 基于堆查找数组中最大的 k 个元素 */
Queue<Integer> topKHeap(int[] nums, int k) {
Queue<Integer> heap = new PriorityQueue<Integer>();
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
heap.add(nums[i]);
}
// 从第 k+1 个元素开始保持堆的长度为 k
for (int i = k; i < nums.length; i++) {
// 若当前元素大于堆顶元素则将堆顶元素出堆当前元素入堆
if (nums[i] > heap.peek()) {
heap.poll();
heap.add(nums[i]);
}
}
return heap;
}
```
=== "C++"
```cpp title="top_k.cpp"
/* 基于堆查找数组中最大的 k 个元素 */
priority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {
priority_queue<int, vector<int>, greater<int>> heap;
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
heap.push(nums[i]);
}
// 从第 k+1 个元素开始保持堆的长度为 k
for (int i = k; i < nums.size(); i++) {
// 若当前元素大于堆顶元素则将堆顶元素出堆当前元素入堆
if (nums[i] > heap.top()) {
heap.pop();
heap.push(nums[i]);
}
}
return heap;
}
```
=== "Python"
```python title="top_k.py"
def top_k_heap(nums: list[int], k: int) -> list[int]:
"""基于堆查找数组中最大的 k 个元素"""
heap = []
# 将数组的前 k 个元素入堆
for i in range(k):
heapq.heappush(heap, nums[i])
# 从第 k+1 个元素开始,保持堆的长度为 k
for i in range(k, len(nums)):
# 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if nums[i] > heap[0]:
heapq.heappop(heap)
heapq.heappush(heap, nums[i])
return heap
```
=== "Go"
```go title="top_k.go"
/* 基于堆查找数组中最大的 k 个元素 */
func topKHeap(nums []int, k int) *minHeap {
h := &minHeap{}
heap.Init(h)
// 将数组的前 k 个元素入堆
for i := 0; i < k; i++ {
heap.Push(h, nums[i])
}
// 从第 k+1 个元素开始保持堆的长度为 k
for i := k; i < len(nums); i++ {
// 若当前元素大于堆顶元素则将堆顶元素出堆当前元素入堆
if nums[i] > h.Top().(int) {
heap.Pop(h)
heap.Push(h, nums[i])
}
}
return h
}
```
=== "JavaScript"
```javascript title="top_k.js"
[class]{}-[func]{topKHeap}
```
=== "TypeScript"
```typescript title="top_k.ts"
[class]{}-[func]{topKHeap}
```
=== "C"
```c title="top_k.c"
[class]{}-[func]{topKHeap}
```
=== "C#"
```csharp title="top_k.cs"
[class]{top_k}-[func]{topKHeap}
```
=== "Swift"
```swift title="top_k.swift"
/* 基于堆查找数组中最大的 k 个元素 */
func topKHeap(nums: [Int], k: Int) -> [Int] {
// 将数组的前 k 个元素入堆
var heap = Array(nums.prefix(k))
// 从第 k+1 个元素开始,保持堆的长度为 k
for i in stride(from: k, to: nums.count, by: 1) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if nums[i] > heap.first! {
heap.removeFirst()
heap.insert(nums[i], at: 0)
}
}
return heap
}
```
=== "Zig"
```zig title="top_k.zig"
[class]{}-[func]{topKHeap}
```
=== "Dart"
```dart title="top_k.dart"
[class]{}-[func]{top_k_heap}
```