hello-algo/en/docs/chapter_searching/binary_search_insertion.md

91 lines
5.6 KiB
Markdown

# Binary search insertion
Binary search is not only used to search for target elements but also to solve many variant problems, such as searching for the insertion position of target elements.
## Case with no duplicate elements
!!! question
Given a sorted array `nums` of length $n$ with unique elements and an element `target`. Now insert `target` into `nums` while maintaining its sorted order. If `target` already exists in the array, insert it to the left of the existing element. Please return the index of `target` in the array after insertion. See the example shown in the figure below.
![Example data for binary search insertion point](binary_search_insertion.assets/binary_search_insertion_example.png)
If you want to reuse the binary search code from the previous section, you need to answer the following two questions.
**Question one**: If the array already contains `target`, would the insertion point be the index of existing element?
The requirement to insert `target` to the left of equal elements means that the newly inserted `target` will replace the original `target` position. In other words, **when the array contains `target`, the insertion point is indeed the index of that `target`**.
**Question two**: When the array does not contain `target`, at which index would it be inserted?
Let's further consider the binary search process: when `nums[m] < target`, pointer $i$ moves, meaning that pointer $i$ is approaching an element greater than or equal to `target`. Similarly, pointer $j$ is always approaching an element less than or equal to `target`.
Therefore, at the end of the binary, it is certain that: $i$ points to the first element greater than `target`, and $j$ points to the first element less than `target`. **It is easy to see that when the array does not contain `target`, the insertion point is $i$**. The code is as follows:
```src
[file]{binary_search_insertion}-[class]{}-[func]{binary_search_insertion_simple}
```
## Case with duplicate elements
!!! question
Based on the previous question, assume the array may contain duplicate elements, all else remains the same.
Suppose there are multiple `target`s in the array, a regular binary search can only return the index of one `target`, **and it cannot determine how many `target`s are to the left and right of that it**.
The problem requires inserting the target element to the very left, **so we need to find the index of the leftmost `target` in the array**. Initially consider implementing this through the steps shown in the figure below.
1. Perform a binary search to find any `target`'s index, say $k$.
2. Starting from index $k$, perform a linear search to the left until the leftmost `target` is found and return.
![Linear search for the insertion point of duplicate elements](binary_search_insertion.assets/binary_search_insertion_naive.png)
Although this method is feasible, it includes linear search, so its time complexity is $O(n)$. This method is inefficient when the array contains many duplicate `target`s.
Now consider extending the binary search code. As shown in the figure below, the overall process remains the same. In each round, we first calculate the middle index $m$, then compare the value of `target` and `nums[m]`, which results in the following cases.
- When `nums[m] < target` or `nums[m] > target`, it means `target` has not been found yet, thus use the normal binary search to narrow the search range, **bring the pointers $i$ and $j$ closer to `target`**.
- When `nums[m] == target`, it indicates that the elements less than `target` are in the range $[i, m - 1]$, therefore use $j = m - 1$ to narrow the range, **thus making pointer $j$ closer to the elements less than `target`**.
After the loop, $i$ points to the leftmost `target`, and $j$ points to the first element less than `target`, **therefore index $i$ is the insertion point**.
=== "<1>"
![Steps for binary search insertion point of duplicate elements](binary_search_insertion.assets/binary_search_insertion_step1.png)
=== "<2>"
![binary_search_insertion_step2](binary_search_insertion.assets/binary_search_insertion_step2.png)
=== "<3>"
![binary_search_insertion_step3](binary_search_insertion.assets/binary_search_insertion_step3.png)
=== "<4>"
![binary_search_insertion_step4](binary_search_insertion.assets/binary_search_insertion_step4.png)
=== "<5>"
![binary_search_insertion_step5](binary_search_insertion.assets/binary_search_insertion_step5.png)
=== "<6>"
![binary_search_insertion_step6](binary_search_insertion.assets/binary_search_insertion_step6.png)
=== "<7>"
![binary_search_insertion_step7](binary_search_insertion.assets/binary_search_insertion_step7.png)
=== "<8>"
![binary_search_insertion_step8](binary_search_insertion.assets/binary_search_insertion_step8.png)
Observe the following code. The operations in the branches `nums[m] > target` and `nums[m] == target` are the same, so these two branches can be merged.
Even so, we can still keep the conditions expanded, as it makes the logic clearer and improves readability.
```src
[file]{binary_search_insertion}-[class]{}-[func]{binary_search_insertion}
```
!!! tip
The code in this section uses "closed interval". If you are interested in "left-closed,right-open", try to implement the code on your own.
In summary, binary search essentially involves setting search targets for pointers $i$ and $j$, which might be a specific element (like `target`) or a range of elements (like elements less than `target`).
In the continuous loop of binary search, pointers $i$ and $j$ gradually approach the predefined target. In the end, they either find the answer or stop after crossing the boundary.